To be robust to surprising developments, an intelligent agent must be able to respond to many different types of unexpected change in the world. To date, there are no general frameworks for defining and characterizing the types of environment changes that are possible. We introduce a formal and theoretical framework for defining and categorizing environment transformations, changes to the world an agent inhabits. We introduce two types of environment transformation: R-transformations which modify environment dynamics and T-transformations which modify the generation process that produces scenarios. We present a new language for describing domains, scenario generators, and transformations, called the Transformation and Simulator Abstraction Language (T-SAL), and a logical formalism that rigorously defines these concepts. Then, we offer the first formal and computational set of tests for eight categories of environment transformations. This domain-independent framework paves the way for describing unambiguous classes of novelty, constrained and domain-independent random generation of environment transformations, replication of environment transformation studies, and fair evaluation of agent robustness.
One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with dichotomous preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). As such, we embed the black-box procedure of solving an integer linear program into a framework that is explainable from start to finish. Moreover, we study the axiomatic properties of the proposed methods by embedding our framework into the rich literature of cooperative bargaining and probabilistic social choice. Lastly, we evaluate the proposed methods on a specific application, namely kidney exchange. We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.
Due to the growing complexity of modern data centers, failures are not uncommon any more. Therefore, fault tolerance mechanisms play a vital role in fulfilling the availability requirements. Multiple availability models have been proposed to assess compute systems, among which Bayesian network models have gained popularity in industry and research due to its powerful modeling formalism. In particular, this work focuses on assessing the availability of redundant and replicated cloud computing services with Bayesian networks. So far, research on availability has only focused on modeling either infrastructure or communication failures in Bayesian networks, but have not considered both simultaneously. This work addresses practical modeling challenges of assessing the availability of large-scale redundant and replicated services with Bayesian networks, including cascading and common-cause failures from the surrounding infrastructure and communication network. In order to ease the modeling task, this paper introduces a high-level modeling formalism to build such a Bayesian network automatically. Performance evaluations demonstrate the feasibility of the presented Bayesian network approach to assess the availability of large-scale redundant and replicated services. This model is not only applicable in the domain of cloud computing it can also be applied for general cases of local and geo-distributed systems.
Long-term visual localization is an essential problem in robotics and computer vision, but remains challenging due to the environmental appearance changes caused by lighting and seasons. While many existing works have attempted to solve it by directly learning invariant sparse keypoints and descriptors to match scenes, these approaches still struggle with adverse appearance changes. Recent developments in image transformations such as neural style transfer have emerged as an alternative to address such appearance gaps. In this work, we propose to combine an image transformation network and a feature-learning network to improve long-term localization performance. Given night-to-day image pairs, the image transformation network transforms the night images into day-like conditions prior to feature matching; the feature network learns to detect keypoint locations with their associated descriptor values, which can be passed to a classical pose estimator to compute the relative poses. We conducted various experiments to examine the effectiveness of combining style transfer and feature learning and its training strategy, showing that such a combination greatly improves long-term localization performance.
In the modern world, we are permanently using, leveraging, interacting with, and relying upon systems of ever higher sophistication, ranging from our cars, recommender systems in e-commerce, and networks when we go online, to integrated circuits when using our PCs and smartphones, the power grid to ensure our energy supply, security-critical software when accessing our bank accounts, and spreadsheets for financial planning and decision making. The complexity of these systems coupled with our high dependency on them implies both a non-negligible likelihood of system failures, and a high potential that such failures have significant negative effects on our everyday life. For that reason, it is a vital requirement to keep the harm of emerging failures to a minimum, which means minimizing the system downtime as well as the cost of system repair. This is where model-based diagnosis comes into play. Model-based diagnosis is a principled, domain-independent approach that can be generally applied to troubleshoot systems of a wide variety of types, including all the ones mentioned above, and many more. It exploits and orchestrates i.a. techniques for knowledge representation, automated reasoning, heuristic problem solving, intelligent search, optimization, stochastics, statistics, decision making under uncertainty, machine learning, as well as calculus, combinatorics and set theory to detect, localize, and fix faults in abnormally behaving systems. In this thesis, we will give an introduction to the topic of model-based diagnosis, point out the major challenges in the field, and discuss a selection of approaches from our research addressing these issues.
In today's world, many technologically advanced countries have realized that real power lies not in physical strength but in educated minds. As a result, every country has embarked on restructuring its education system to meet the demands of technology. As a country in the midst of these developments, we cannot remain indifferent to this transformation in education. In the Information Age of the 21st century, rapid access to information is crucial for the development of individuals and societies. To take our place among the knowledge societies in a world moving rapidly towards globalization, we must closely follow technological innovations and meet the requirements of technology. This can be achieved by providing learning opportunities to anyone interested in acquiring education in their area of interest. This study focuses on the advantages and disadvantages of internet-based learning compared to traditional teaching methods, the importance of computer usage in internet-based learning, negative factors affecting internet-based learning, and the necessary recommendations for addressing these issues. In today's world, it is impossible to talk about education without technology or technology without education.
The absence of transparency and explainability hinders the clinical adoption of Machine learning (ML) algorithms. Although various methods of explainable artificial intelligence (XAI) have been suggested, there is a lack of literature that delves into their practicality and assesses them based on criteria that could foster trust in clinical environments. To address this gap this study evaluates two popular XAI methods used for explaining predictive models in the healthcare context in terms of whether they (i) generate domain-appropriate representation, i.e. coherent with respect to the application task, (ii) impact clinical workflow and (iii) are consistent. To that end, explanations generated at the cohort and patient levels were analysed. The paper reports the first benchmarking of the XAI methods applied to risk prediction models obtained by evaluating the concordance between generated explanations and the trigger of a future clinical deterioration episode recorded by the data collection system. We carried out an analysis using two Electronic Medical Records (EMR) datasets sourced from Australian major hospitals. The findings underscore the limitations of state-of-the-art XAI methods in the clinical context and their potential benefits. We discuss these limitations and contribute to the theoretical development of trustworthy XAI solutions where clinical decision support guides the choice of intervention by suggesting the pattern or drivers for clinical deterioration in the future.
In cooperative Multi-Agent Reinforcement Learning (MARL) agents are required to learn behaviours as a team to achieve a common goal. However, while learning a task, some agents may end up learning sub-optimal policies, not contributing to the objective of the team. Such agents are called lazy agents due to their non-cooperative behaviours that may arise from failing to understand whether they caused the rewards. As a consequence, we observe that the emergence of cooperative behaviours is not necessarily a byproduct of being able to solve a task as a team. In this paper, we investigate the applications of causality in MARL and how it can be applied in MARL to penalise these lazy agents. We observe that causality estimations can be used to improve the credit assignment to the agents and show how it can be leveraged to improve independent learning in MARL. Furthermore, we investigate how Amortized Causal Discovery can be used to automate causality detection within MARL environments. The results demonstrate that causality relations between individual observations and the team reward can be used to detect and punish lazy agents, making them develop more intelligent behaviours. This results in improvements not only in the overall performances of the team but also in their individual capabilities. In addition, results show that Amortized Causal Discovery can be used efficiently to find causal relations in MARL.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.
Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.