In this paper, we present a~generalisation of proof simulation procedures for Frege systems by Bonet and Buss to some logics for which the deduction theorem does not hold. In particular, we study the case of finite-valued \L{}ukasiewicz logics. To this end, we provide proof systems that augment Avron's Frege system for \L{}ukasiewicz three-valued logic with nested and general versions of the disjunction elimination rule, respectively. For these systems we provide upper bounds on speed-ups w.r.t.\ both the number of steps in proofs and the length of proofs. We also consider Tamminga's natural deduction and Avron's hypersequent calculus for 3-valued \L{}ukasiewicz logic and generalise our results considering the disjunction elimination rule to all finite-valued \L{}ukasiewicz logics.
In this paper, we set the mathematical foundations of the Dynamical Low-Rank Approximation (DLRA) method for stochastic differential equations. DLRA aims at approximating the solution as a linear combination of a small number of basis vectors with random coefficients (low rank format) with the peculiarity that both the basis vectors and the random coefficients vary in time. While the formulation and properties of DLRA are now well understood for random/parametric equations, the same cannot be said for SDEs and this work aims to fill this gap. We start by rigorously formulating a Dynamically Orthogonal (DO) approximation (an instance of DLRA successfully used in applications) for SDEs, which we then generalize to define a parametrization independent DLRA for SDEs. We show local well-posedness of the DO equations and their equivalence with the DLRA formulation. We also characterize the explosion time of the DO solution by a loss of linear independence of the random coefficients defining the solution expansion and give sufficient conditions for global existence.
In this paper, we propose a novel multiscale model reduction strategy tailored to address the Poisson equation within heterogeneous perforated domains. The numerical simulation of this intricate problem is impeded by its multiscale characteristics, necessitating an exceptionally fine mesh to adequately capture all relevant details. To overcome the challenges inherent in the multiscale nature of the perforations, we introduce a coarse space constructed using the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). This involves constructing basis functions through a sequence of local energy minimization problems over eigenspaces containing localized information pertaining to the heterogeneities. Through our analysis, we demonstrate that the oversampling layers depend on the local eigenvalues, thereby implicating the local geometry as well. Additionally, we provide numerical examples to illustrate the efficacy of the proposed scheme.
In this paper, we propose a method for calculating the three-dimensional (3D) position and orientation of a pallet placed on a shelf on the side of a forklift truck using a 360-degree camera. By using a 360-degree camera mounted on the forklift truck, it is possible to observe both the pallet at the side of the forklift and one several meters ahead. However, the pallet on the obtained image is observed with different distortion depending on its 3D position, so that it is difficult to extract the pallet from the image. To solve this problem, a method [1] has been proposed for detecting a pallet by projecting a 360-degree image on a vertical plane that coincides with the front of the shelf to calculate an image similar to the image seen from the front of the shelf. At the same time as the detection, the approximate position and orientation of the detected pallet can be obtained, but the accuracy is not sufficient for automatic control of the forklift truck. In this paper, we propose a method for accurately detecting the yaw angle, which is the angle of the front surface of the pallet in the horizontal plane, by projecting the 360-degree image on a horizontal plane including the boundary line of the front surface of the detected pallet. The position of the pallet is also determined by moving the vertical plane having the detected yaw angle back and forth, and finding the position at which the degree of coincidence between the projection image on the vertical plane and the actual size of the front surface of the pallet is maximized. Experiments using real images taken in a laboratory and an actual warehouse have confirmed that the proposed method can calculate the position and orientation of a pallet within a reasonable calculation time and with the accuracy necessary for inserting the fork into the hole in the front of the pallet.
The implication problem for conditional independence (CI) asks whether the fact that a probability distribution obeys a given finite set of CI relations implies that a further CI statement also holds in this distribution. This problem has a long and fascinating history, cumulating in positive results about implications now known as the semigraphoid axioms as well as impossibility results about a general finite characterization of CI implications. Motivated by violation of faithfulness assumptions in causal discovery, we study the implication problem in the special setting where the CI relations are obtained from a directed acyclic graphical (DAG) model along with one additional CI statement. Focusing on the Gaussian case, we give a complete characterization of when such an implication is graphical by using algebraic techniques. Moreover, prompted by the relevance of strong faithfulness in statistical guarantees for causal discovery algorithms, we give a graphical solution for an approximate CI implication problem, in which we ask whether small values of one additional partial correlation entail small values for yet a further partial correlation.
In this paper, we introduce a conservative Crank-Nicolson-type finite difference schemes for the regularized logarithmic Schr\"{o}dinger equation (RLSE) with Dirac delta potential in 1D. The regularized logarithmic Schr\"{o}dinger equation with a small regularized parameter $0<\eps \ll 1$ is adopted to approximate the logarithmic Schr\"{o}dinger equation (LSE) with linear convergence rate $O(\eps)$. The numerical method can be used to avoid numerical blow-up and/or to suppress round-off error due to the logarithmic nonlinearity in LSE. Then, by using domain-decomposition technique, we can transform the original problem into an interface problem. Different treatments on the interface conditions lead to different discrete schemes and it turns out that a simple discrete approximation of the Dirac potential coincides with one of the conservative finite difference schemes. The optimal $H^1$ error estimates and the conservative properties of the finite difference schemes are investigated. The Crank-Nicolson finite difference methods enjoy the second-order convergence rate in time and space. Numerical examples are provided to support our analysis and show the accuracy and efficiency of the numerical method.
This paper studies a quantum simulation technique for solving the Fokker-Planck equation. Traditional semi-discretization methods often fail to preserve the underlying Hamiltonian dynamics and may even modify the Hamiltonian structure, particularly when incorporating boundary conditions. We address this challenge by employing the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations. We explore the application in two distinct forms of the Fokker-Planck equation. For the conservation form, we show that the semi-discretization-based Schrodingerization is preferable, especially when dealing with non-periodic boundary conditions. Additionally, we analyze the Schrodingerization approach for unstable systems that possess positive eigenvalues in the real part of the coefficient matrix or differential operator. Our analysis reveals that the direct use of Schrodingerization has the same effect as a stabilization procedure. For the heat equation form, we propose a quantum simulation procedure based on the time-splitting technique. We discuss the relationship between operator splitting in the Schrodingerization method and its application directly to the original problem, illustrating how the Schrodingerization method accurately reproduces the time-splitting solutions at each step. Furthermore, we explore finite difference discretizations of the heat equation form using shift operators. Utilizing Fourier bases, we diagonalize the shift operators, enabling efficient simulation in the frequency space. Providing additional guidance on implementing the diagonal unitary operators, we conduct a comparative analysis between diagonalizations in the Bell and the Fourier bases, and show that the former generally exhibits greater efficiency than the latter.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.