亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce average-distortion sketching for metric spaces. As in (worst-case) sketching, these algorithms compress points in a metric space while approximately recovering pairwise distances. The novelty is studying average-distortion: for any fixed (yet, arbitrary) distribution $\mu$ over the metric, the sketch should not over-estimate distances, and it should (approximately) preserve the average distance with respect to draws from $\mu$. The notion generalizes average-distortion embeddings into $\ell_1$ [Rabinovich '03, Kush-Nikolov-Tang '21] as well as data-dependent locality-sensitive hashing [Andoni-Razenshteyn '15, Andoni-Naor-Nikolov-et-al. '18], which have been recently studied in the context of nearest neighbor search. $\bullet$ For all $p \in [1, \infty)$ and any $c$ larger than a fixed constant, we give an average-distortion sketch for $([\Delta]^d, \ell_p)$ with approximation $c$ and bit-complexity $\text{poly}(cp \cdot 2^{p/c} \cdot \log(d\Delta))$, which is provably impossible in (worst-case) sketching. $\bullet$ As an application, we improve on the approximation of sublinear-time data structures for nearest neighbor search over $\ell_p$ (for large $p > 2$). The prior best approximation was $O(p)$ [Andoni-Naor-Nikolov-et.al '18, Kush-Nikolov-Tang '21], and we show it can be any $c$ larger than a fixed constant (irrespective of $p$) by using $n^{\text{poly}(cp \cdot 2^{p/c})}$ space. We give some evidence that $2^{\Omega(p/c)}$ space may be necessary by giving a lower bound on average-distortion sketches which produce a certain probabilistic certificate of farness (which our sketches crucially rely on).

相關內容

We introduce a novel offset meshing approach that can robustly handle a 3D surface mesh with an arbitrary geometry and topology configurations, while nicely capturing the sharp features on the original input for both inward and outward offsets. Compared to the existing approaches focusing on constant-radius offset, to the best of our knowledge, we propose the first-ever solution for mitered offset that can well preserve sharp features. Our method is designed based on several core principals: 1) explicitly generating the offset vertices and triangles with feature-capturing energy and constraints; 2) prioritizing the generation of the offset geometry before establishing its connectivity, 3) employing exact algorithms in critical pipeline steps for robustness, balancing the use of floating-point computations for efficiency, 4) applying various conservative speed up strategies including early reject non-contributing computations to the final output. Our approach further uniquely supports variable offset distances on input surface elements, offering a wider range practical applications compared to conventional methods. We have evaluated our method on a subset of Thinkgi10K, containing models with diverse topological and geometric complexities created by practitioners in various fields. Our results demonstrate the superiority of our approach over current state-of-the-art methods in terms of element count, feature preservation, and non-uniform offset distances of the resulting offset mesh surfaces, marking a significant advancement in the field.

Inspired by the connection between classical regret measures employed in universal prediction and R\'{e}nyi divergence, we introduce a new class of universal predictors that depend on a real parameter $\alpha\geq 1$. This class interpolates two well-known predictors, the mixture estimators, that include the Laplace and the Krichevsky-Trofimov predictors, and the Normalized Maximum Likelihood (NML) estimator. We point out some advantages of this new class of predictors and study its benefits from two complementary viewpoints: (1) we prove its optimality when the maximal R\'{e}nyi divergence is considered as a regret measure, which can be interpreted operationally as a middle ground between the standard average and worst-case regret measures; (2) we discuss how it can be employed when NML is not a viable option, as an alternative to other predictors such as Luckiness NML. Finally, we apply the $\alpha$-NML predictor to the class of discrete memoryless sources (DMS), where we derive simple formulas to compute the predictor and analyze its asymptotic performance in terms of worst-case regret.

We introduce a method for performing cross-validation without sample splitting. The method is well-suited for problems where traditional sample splitting is infeasible, such as when data are not assumed to be independently and identically distributed. Even in scenarios where sample splitting is possible, our method offers a computationally efficient alternative for estimating prediction error, achieving comparable or even lower error than standard cross-validation at a significantly reduced computational cost. Our approach constructs train-test data pairs using externally generated Gaussian randomization variables, drawing inspiration from recent randomization techniques such as data-fission and data-thinning. The key innovation lies in a carefully designed correlation structure among these randomization variables, referred to as antithetic Gaussian randomization. This correlation is crucial in maintaining a bounded variance while allowing the bias to vanish, offering an additional advantage over standard cross-validation, whose performance depends heavily on the bias-variance tradeoff dictated by the number of folds. We provide a theoretical analysis of the mean squared error of the proposed estimator, proving that as the level of randomization decreases to zero, the bias converges to zero, while the variance remains bounded and decays linearly with the number of repetitions. This analysis highlights the benefits of the antithetic Gaussian randomization over independent randomization. Simulation studies corroborate our theoretical findings, illustrating the robust performance of our cross-validated estimator across various data types and loss functions.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

We introduce "talking-heads attention" - a variation on multi-head attention which includes linearprojections across the attention-heads dimension, immediately before and after the softmax operation.While inserting only a small number of additional parameters and a moderate amount of additionalcomputation, talking-heads attention leads to better perplexities on masked language modeling tasks, aswell as better quality when transfer-learning to language comprehension and question answering tasks.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Advanced methods of applying deep learning to structured data such as graphs have been proposed in recent years. In particular, studies have focused on generalizing convolutional neural networks to graph data, which includes redefining the convolution and the downsampling (pooling) operations for graphs. The method of generalizing the convolution operation to graphs has been proven to improve performance and is widely used. However, the method of applying downsampling to graphs is still difficult to perform and has room for improvement. In this paper, we propose a graph pooling method based on self-attention. Self-attention using graph convolution allows our pooling method to consider both node features and graph topology. To ensure a fair comparison, the same training procedures and model architectures were used for the existing pooling methods and our method. The experimental results demonstrate that our method achieves superior graph classification performance on the benchmark datasets using a reasonable number of parameters.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

北京阿比特科技有限公司