With the proliferation of digital content and the need for efficient information retrieval, this study's insights can be applied to various domains, including news services, e-commerce, and digital marketing, to provide users with more meaningful and tailored experiences. The study addresses the common problem of polysemy in search engines, where the same keyword may have multiple meanings. It proposes a solution to this issue by embedding a smart search function into the search engine, which can differentiate between different meanings based on sentiment. The study leverages sentiment analysis, a powerful natural language processing (NLP) technique, to classify and categorize news articles based on their emotional tone. This can provide more insightful and nuanced search results. The article reports an impressive accuracy rate of 85% for the proposed smart search function, which outperforms conventional search engines. This indicates the effectiveness of the sentiment-based approach. The research explores multiple sentiment analysis models, including Sentistrength and Valence Aware Dictionary for Sentiment Reasoning (VADER), to determine the best-performing approach. The findings can be applied to enhance search engines, making them more capable of understanding the context and intent behind users 'queries. This can lead to better search results that are more aligned with what users are looking for. The proposed smart search function can improve the user experience by reducing the need to sift through irrelevant search results. This is particularly important in an age where information overload is common.
As advancements in artificial intelligence (AI) propel progress in the life sciences, they may also enable the weaponisation and misuse of biological agents. This article differentiates two classes of AI tools that could pose such biosecurity risks: large language models (LLMs) and biological design tools (BDTs). LLMs, such as GPT-4 and its successors, might provide dual-use information and thus remove some barriers encountered by historical biological weapons efforts. As LLMs are turned into multi-modal lab assistants and autonomous science tools, this will increase their ability to support non-experts in performing laboratory work. Thus, LLMs may in particular lower barriers to biological misuse. In contrast, BDTs will expand the capabilities of sophisticated actors. Concretely, BDTs may enable the creation of pandemic pathogens substantially worse than anything seen to date and could enable forms of more predictable and targeted biological weapons. In combination, the convergence of LLMs and BDTs could raise the ceiling of harm from biological agents and could make them broadly accessible. A range of interventions would help to manage risks. Independent pre-release evaluations could help understand the capabilities of models and the effectiveness of safeguards. Options for differentiated access to such tools should be carefully weighed with the benefits of openly releasing systems. Lastly, essential for mitigating risks will be universal and enhanced screening of gene synthesis products.
We investigate the descriptive complexity of a class of neural networks with unrestricted topologies and piecewise polynomial activation functions. We consider the general scenario where the running time is unlimited and floating-point numbers are used for simulating reals. We characterize these neural networks with a rule-based logic for Boolean networks. In particular, we show that the sizes of the neural networks and the corresponding Boolean rule formulae are polynomially related. In fact, in the direction from Boolean rules to neural networks, the blow-up is only linear. We also analyze the delays in running times due to the translations. In the translation from neural networks to Boolean rules, the time delay is polylogarithmic in the neural network size and linear in time. In the converse translation, the time delay is linear in both factors. We also obtain translations between the rule-based logic for Boolean networks, the diamond-free fragment of modal substitution calculus and a class of recursive Boolean circuits where the number of input and output gates match.
Rational best approximations (in a Chebyshev sense) to real functions are characterized by an equioscillating approximation error. Similar results do not hold true for rational best approximations to complex functions in general. In the present work, we consider unitary rational approximations to the exponential function on the imaginary axis, which map the imaginary axis to the unit circle. In the class of unitary rational functions, best approximations are shown to exist, to be uniquely characterized by equioscillation of a phase error, and to possess a super-linear convergence rate. Furthermore, the best approximations have full degree (i.e., non-degenerate), achieve their maximum approximation error at points of equioscillation, and interpolate at intermediate points. Asymptotic properties of poles, interpolation nodes, and equioscillation points of these approximants are studied. Three algorithms, which are found very effective to compute unitary rational approximations including candidates for best approximations, are sketched briefly. Some consequences to numerical time-integration are discussed. In particular, time propagators based on unitary best approximants are unitary, symmetric and A-stable.
Deep learning techniques have dominated the literature on aspect-based sentiment analysis (ABSA), achieving state-of-the-art performance. However, deep models generally suffer from spurious correlations between input features and output labels, which hurts the robustness and generalization capability by a large margin. In this paper, we propose to reduce spurious correlations for ABSA, via a novel Contrastive Variational Information Bottleneck framework (called CVIB). The proposed CVIB framework is composed of an original network and a self-pruned network, and these two networks are optimized simultaneously via contrastive learning. Concretely, we employ the Variational Information Bottleneck (VIB) principle to learn an informative and compressed network (self-pruned network) from the original network, which discards the superfluous patterns or spurious correlations between input features and prediction labels. Then, self-pruning contrastive learning is devised to pull together semantically similar positive pairs and push away dissimilar pairs, where the representations of the anchor learned by the original and self-pruned networks respectively are regarded as a positive pair while the representations of two different sentences within a mini-batch are treated as a negative pair. To verify the effectiveness of our CVIB method, we conduct extensive experiments on five benchmark ABSA datasets and the experimental results show that our approach achieves better performance than the strong competitors in terms of overall prediction performance, robustness, and generalization. Code and data to reproduce the results in this paper is available at: //github.com/shesshan/CVIB.
Fusing measurements from multiple, heterogeneous, partial sources, observing a common object or process, poses challenges due to the increasing availability of numbers and types of sensors. In this work we propose, implement and validate an end-to-end computational pipeline in the form of a multiple-auto-encoder neural network architecture for this task. The inputs to the pipeline are several sets of partial observations, and the result is a globally consistent latent space, harmonizing (rigidifying, fusing) all measurements. The key enabler is the availability of multiple slightly perturbed measurements of each instance:, local measurement, "bursts", that allows us to estimate the local distortion induced by each instrument. We demonstrate the approach in a sequence of examples, starting with simple two-dimensional data sets and proceeding to a Wi-Fi localization problem and to the solution of a "dynamical puzzle" arising in spatio-temporal observations of the solutions of Partial Differential Equations.
Generative Adversarial Networks (GANs) have become a ubiquitous technology for data generation, with their prowess in image generation being well-established. However, their application in generating tabular data has been less than ideal. Furthermore, attempting to incorporate differential privacy technology into these frameworks has often resulted in a degradation of data utility. To tackle these challenges, this paper introduces DP-SACTGAN, a novel Conditional Generative Adversarial Network (CGAN) framework for differentially private tabular data generation, aiming to surmount these obstacles. Experimental findings demonstrate that DP-SACTGAN not only accurately models the distribution of the original data but also effectively satisfies the requirements of differential privacy.
Multinomial prediction models (MPMs) have a range of potential applications across healthcare where the primary outcome of interest has multiple nominal or ordinal categories. However, the application of MPMs is scarce, which may be due to the added methodological complexities that they bring. This article provides a guide of how to develop, externally validate, and update MPMs. Using a previously developed and validated MPM for treatment outcomes in rheumatoid arthritis as an example, we outline guidance and recommendations for producing a clinical prediction model using multinomial logistic regression. This article is intended to supplement existing general guidance on prediction model research. This guide is split into three parts: 1) Outcome definition and variable selection, 2) Model development, and 3) Model evaluation (including performance assessment, internal and external validation, and model recalibration). We outline how to evaluate and interpret the predictive performance of MPMs. R code is provided. We recommend the application of MPMs in clinical settings where the prediction of a nominal polytomous outcome is of interest. Future methodological research could focus on MPM-specific considerations for variable selection and sample size criteria for external validation.
As social media continues to grow rapidly, the prevalence of harassment on these platforms has also increased. This has piqued the interest of researchers in the field of fake detection. Social media data, often forms complex graphs with numerous nodes, posing several challenges. These challenges and limitations include dealing with a significant amount of irrelevant features in matrices and addressing issues such as high data dispersion and an imbalanced class distribution within the dataset. To overcome these challenges and limitations, researchers have employed auto-encoders and a combination of semi-supervised learning with a GAN algorithm, referred to as SGAN. Our proposed method utilizes auto-encoders for feature extraction and incorporates SGAN. By leveraging an unlabeled dataset, the unsupervised layer of SGAN compensates for the limited availability of labeled data, making efficient use of the limited number of labeled instances. Multiple evaluation metrics were employed, including the Confusion Matrix and the ROC curve. The dataset was divided into training and testing sets, with 100 labeled samples for training and 1,000 samples for testing. The novelty of our research lies in applying SGAN to address the issue of imbalanced datasets in fake account detection. By optimizing the use of a smaller number of labeled instances and reducing the need for extensive computational power, our method offers a more efficient solution. Additionally, our study contributes to the field by achieving an 81% accuracy in detecting fake accounts using only 100 labeled samples. This demonstrates the potential of SGAN as a powerful tool for handling minority classes and addressing big data challenges in fake account detection.
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.