亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work targets what we consider to be the foundational step for urban airborne robots, a safe landing. Our attention is directed toward what we deem the most crucial aspect of the safe landing perception stack: segmentation. We present a streamlined reactive UAV system that employs visual servoing by harnessing the capabilities of open vocabulary image segmentation. This approach can adapt to various scenarios with minimal adjustments, bypassing the necessity for extensive data accumulation for refining internal models, thanks to its open vocabulary methodology. Given the limitations imposed by local authorities, our primary focus centers on operations originating from altitudes of 100 meters. This choice is deliberate, as numerous preceding works have dealt with altitudes up to 30 meters, aligning with the capabilities of small stereo cameras. Consequently, we leave the remaining 20m to be navigated using conventional 3D path planning methods. Utilizing monocular cameras and image segmentation, our findings demonstrate the system's capability to successfully execute landing maneuvers at altitudes as low as 20 meters. However, this approach is vulnerable to intermittent and occasionally abrupt fluctuations in the segmentation between frames in a video stream. To address this challenge, we enhance the image segmentation output by introducing what we call a dynamic focus: a masking mechanism that self adjusts according to the current landing stage. This dynamic focus guides the control system to avoid regions beyond the drone's safety radius projected onto the ground, thus mitigating the problems with fluctuations. Through the implementation of this supplementary layer, our experiments have reached improvements in the landing success rate of almost tenfold when compared to global segmentation. All the source code is open source and available online (github.com/MISTLab/DOVESEI).

相關內容

A significant bottleneck in applying current reinforcement learning algorithms to real-world scenarios is the need to reset the environment between every episode. This reset process demands substantial human intervention, making it difficult for the agent to learn continuously and autonomously. Several recent works have introduced autonomous reinforcement learning (ARL) algorithms that generate curricula for jointly training reset and forward policies. While their curricula can reduce the number of required manual resets by taking into account the agent's learning progress, they rely on task-specific knowledge, such as predefined initial states or reset reward functions. In this paper, we propose a novel ARL algorithm that can generate a curriculum adaptive to the agent's learning progress without task-specific knowledge. Our curriculum empowers the agent to autonomously reset to diverse and informative initial states. To achieve this, we introduce a success discriminator that estimates the success probability from each initial state when the agent follows the forward policy. The success discriminator is trained with relabeled transitions in a self-supervised manner. Our experimental results demonstrate that our ARL algorithm can generate an adaptive curriculum and enable the agent to efficiently bootstrap to solve sparse-reward maze navigation tasks, outperforming baselines with significantly fewer manual resets.

The ageing society brings attention to daily elderly care through sensing technologies. The future smart home is expected to enable in-home daily monitoring, such as fall detection, for seniors in a non-invasive, non-cooperative, and non-contact manner. The mmWave radar is a promising candidate technology for its privacy-preserving and non-contact manner. However, existing solutions suffer from low accuracy and robustness due to environment dependent features. In this paper, we present FADE (\underline{FA}ll \underline{DE}tection), a practical fall detection radar system with enhanced accuracy and robustness in real-world scenarios. The key enabler underlying FADE is an interacting multiple model (IMM) state estimator that can extract environment-independent features for highly accurate and instantaneous fall detection. Furthermore, we proposed a robust multiple-user tracking system to deal with noises from the environment and other human bodies. We deployed our algorithm on low computing power and low power consumption system-on-chip (SoC) composed of data front end, DSP, and ARM processor, and tested its performance in real-world. The experiment shows that the accuracy of fall detection is up to 95\%.

Emergency management urgently requires comprehensive knowledge while having a high possibility to go beyond individuals' cognitive scope. Therefore, artificial intelligence(AI) supported decision-making under that circumstance is of vital importance. Recent emerging large language models (LLM) provide a new direction for enhancing targeted machine intelligence. However, the utilization of LLM directly would inevitably introduce unreliable output for its inherent issue of hallucination and poor reasoning skills. In this work, we develop a system called Enhancing Emergency decision-making with Knowledge Graph and LLM (E-KELL), which provides evidence-based decision-making in various emergency stages. The study constructs a structured emergency knowledge graph and guides LLMs to reason over it via a prompt chain. In real-world evaluations, E-KELL receives scores of 9.06, 9.09, 9.03, and 9.09 in comprehensibility, accuracy, conciseness, and instructiveness from a group of emergency commanders and firefighters, demonstrating a significant improvement across various situations compared to baseline models. This work introduces a novel approach to providing reliable emergency decision support.

Deep neural networks are normally executed in the forward direction. However, in this work, we identify a vulnerability that enables models to be trained in both directions and on different tasks. Adversaries can exploit this capability to hide rogue models within seemingly legitimate models. In addition, in this work we show that neural networks can be taught to systematically memorize and retrieve specific samples from datasets. Together, these findings expose a novel method in which adversaries can exfiltrate datasets from protected learning environments under the guise of legitimate models. We focus on the data exfiltration attack and show that modern architectures can be used to secretly exfiltrate tens of thousands of samples with high fidelity, high enough to compromise data privacy and even train new models. Moreover, to mitigate this threat we propose a novel approach for detecting infected models.

Despite lagging behind their modal cousins in many respects, Vision Transformers have provided an interesting opportunity to bridge the gap between sequence modeling and image modeling. Up until now however, vision transformers have largely been held back, due to both computational inefficiency, and lack of proper handling of spatial dimensions. In this paper, we introduce the Cross-Axis Transformer. CAT is a model inspired by both Axial Transformers, and Microsoft's recent Retentive Network, that drastically reduces the required number of floating point operations required to process an image, while simultaneously converging faster and more accurately than the Vision Transformers it replaces.

Recently, generative AI technologies have emerged as a significant advancement in artificial intelligence field, renowned for their language and image generation capabilities. Meantime, space-air-ground integrated network (SAGIN) is an integral part of future B5G/6G for achieving ubiquitous connectivity. Inspired by this, this article explores an integration of generative AI in SAGIN, focusing on potential applications and case study. We first provide a comprehensive review of SAGIN and generative AI models, highlighting their capabilities and opportunities of their integration. Benefiting from generative AI's ability to generate useful data and facilitate advanced decision-making processes, it can be applied to various scenarios of SAGIN. Accordingly, we present a concise survey on their integration, including channel modeling and channel state information (CSI) estimation, joint air-space-ground resource allocation, intelligent network deployment, semantic communications, image extraction and processing, security and privacy enhancement. Next, we propose a framework that utilizes a Generative Diffusion Model (GDM) to construct channel information map to enhance quality of service for SAGIN. Simulation results demonstrate the effectiveness of the proposed framework. Finally, we discuss potential research directions for generative AI-enabled SAGIN.

Recommendation systems are dynamic economic systems that balance the needs of multiple stakeholders. A recent line of work studies incentives from the content providers' point of view. Content providers, e.g., vloggers and bloggers, contribute fresh content and rely on user engagement to create revenue and finance their operations. In this work, we propose a contextual multi-armed bandit setting to model the dependency of content providers on exposure. In our model, the system receives a user context in every round and has to select one of the arms. Every arm is a content provider who must receive a minimum number of pulls every fixed time period (e.g., a month) to remain viable in later rounds; otherwise, the arm departs and is no longer available. The system aims to maximize the users' (content consumers) welfare. To that end, it should learn which arms are vital and ensure they remain viable by subsidizing arm pulls if needed. We develop algorithms with sub-linear regret, as well as a lower bound that demonstrates that our algorithms are optimal up to logarithmic factors.

Since their inception, Variational Autoencoders (VAEs) have become central in machine learning. Despite their widespread use, numerous questions regarding their theoretical properties remain open. Using PAC-Bayesian theory, this work develops statistical guarantees for VAEs. First, we derive the first PAC-Bayesian bound for posterior distributions conditioned on individual samples from the data-generating distribution. Then, we utilize this result to develop generalization guarantees for the VAE's reconstruction loss, as well as upper bounds on the distance between the input and the regenerated distributions. More importantly, we provide upper bounds on the Wasserstein distance between the input distribution and the distribution defined by the VAE's generative model.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

北京阿比特科技有限公司