亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A graph $H$ is a clique graph if $H$ is a vertex-disjoin union of cliques. Abu-Khzam (2017) introduced the $(a,d)$-{Cluster Editing} problem, where for fixed natural numbers $a,d$, given a graph $G$ and vertex-weights $a^*:\ V(G)\rightarrow \{0,1,\dots, a\}$ and $d^*{}:\ V(G)\rightarrow \{0,1,\dots, d\}$, we are to decide whether $G$ can be turned into a cluster graph by deleting at most $d^*(v)$ edges incident to every $v\in V(G)$ and adding at most $a^*(v)$ edges incident to every $v\in V(G)$. Results by Komusiewicz and Uhlmann (2012) and Abu-Khzam (2017) provided a dichotomy of complexity (in P or NP-complete) of $(a,d)$-{Cluster Editing} for all pairs $a,d$ apart from $a=d=1.$ Abu-Khzam (2017) conjectured that $(1,1)$-{Cluster Editing} is in P. We resolve Abu-Khzam's conjecture in affirmative by (i) providing a serious of five polynomial-time reductions to $C_3$-free and $C_4$-free graphs of maximum degree at most 3, and (ii) designing a polynomial-time algorithm for solving $(1,1)$-{Cluster Editing} on $C_3$-free and $C_4$-free graphs of maximum degree at most 3.

相關內容

Multilevel lattice codes, such as the associated to Constructions $C$, $\overline{D}$, D and D', have relevant applications in communications. In this paper, we investigate some properties of lattices obtained via Constructions D and D' from $q$-ary linear codes. Connections with Construction A, generator matrices, expressions and bounds for the lattice volume and minimum distances are derived. Extensions of previous results regarding construction and decoding of binary and $p$-ary linear codes ($p$ prime) are also presented.

An induced subgraph is called an induced matching if each vertex is a degree-1 vertex in the subgraph. The \textsc{Almost Induced Matching} problem asks whether we can delete at most $k$ vertices from the input graph such that the remaining graph is an induced matching. This paper studies parameterized algorithms for this problem by taking the size $k$ of the deletion set as the parameter. First, we prove a $6k$-vertex kernel for this problem, improving the previous result of $7k$. Second, we give an $O^*(1.6957^k)$-time and polynomial-space algorithm, improving the previous running-time bound of $O^*(1.7485^k)$.

Originating in Girard's Linear logic, Ehrhard and Regnier's Taylor expansion of $\lambda$-terms has been broadly used as a tool to approximate the terms of several variants of the $\lambda$-calculus. Many results arise from a Commutation theorem relating the normal form of the Taylor expansion of a term to its B\"ohm tree. This led us to consider extending this formalism to the infinitary $\lambda$-calculus, since the $\Lambda_{\infty}^{001}$ version of this calculus has B\"ohm trees as normal forms and seems to be the ideal framework to reformulate the Commutation theorem. We give a (co-)inductive presentation of $\Lambda_{\infty}^{001}$. We define a Taylor expansion on this calculus, and state that the infinitary $\beta$-reduction can be simulated through this Taylor expansion. The target language is the usual resource calculus, and in particular the resource reduction remains finite, confluent and terminating. Finally, we state the generalised Commutation theorem and use our results to provide simple proofs of some normalisation and confluence properties in the infinitary $\lambda$-calculus.

A $c$-labeling $\phi: V(G) \rightarrow \{1, 2, \hdots, c \}$ of graph $G$ is distinguishing if, for every non-trivial automorphism $\pi$ of $G$, there is some vertex $v$ so that $\phi(v) \neq \phi(\pi(v))$. The distinguishing number of $G$, $D(G)$, is the smallest $c$ such that $G$ has a distinguishing $c$-labeling. We consider a compact version of Tyshkevich's graph decomposition theorem where trivial components are maximally combined to form a complete graph or a graph of isolated vertices. Suppose the compact canonical decomposition of $G$ is $G_{k} \circ G_{k-1} \circ \cdots \circ G_1 \circ G_0$. We prove that $\phi$ is a distinguishing labeling of $G$ if and only if $\phi$ is a distinguishing labeling of $G_i$ when restricted to $V(G_i)$ for $i = 0, \hdots, k$. Thus, $D(G) = \max \{D(G_i), i = 0, \hdots, k \}$. We then present an algorithm that computes the distinguishing number of a unigraph in linear time.

The IoT ecosystem is able to leverage vast amounts of data for intelligent decision-making. Federated Learning (FL), a decentralized machine learning technique, is widely used to collect and train machine learning models from a variety of distributed data sources. Both IoT and FL systems can be complementary and used together. However, the resource-constrained nature of IoT devices prevents the widescale deployment FL in the real world. This research paper presents a comprehensive survey of the challenges and solutions associated with implementing Federated Learning (FL) in resource-constrained Internet of Things (IoT) environments, viewed from 2 levels, client and server. We focus on solutions regarding limited client resources, presence of heterogeneous client data, server capacity, and high communication costs, and assess their effectiveness in various scenarios. Furthermore, we categorize the solutions based on the location of their application, i.e., the IoT client, and the FL server. In addition to a comprehensive review of existing research and potential future directions, this paper also presents new evaluation metrics that would allow researchers to evaluate their solutions on resource-constrained IoT devices.

Shannon proved that almost all Boolean functions require a circuit of size $\Theta(2^n/n)$. We prove a quantum analog of this classical result. Unlike in the classical case the number of quantum circuits of any fixed size that we allow is uncountably infinite. Our main tool is a classical result in real algebraic geometry bounding the number of realizable sign conditions of any finite set of real polynomials in many variables.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Manually labeling objects by tracing their boundaries is a laborious process. In Polygon-RNN++ the authors proposed Polygon-RNN that produces polygonal annotations in a recurrent manner using a CNN-RNN architecture, allowing interactive correction via humans-in-the-loop. We propose a new framework that alleviates the sequential nature of Polygon-RNN, by predicting all vertices simultaneously using a Graph Convolutional Network (GCN). Our model is trained end-to-end. It supports object annotation by either polygons or splines, facilitating labeling efficiency for both line-based and curved objects. We show that Curve-GCN outperforms all existing approaches in automatic mode, including the powerful PSP-DeepLab and is significantly more efficient in interactive mode than Polygon-RNN++. Our model runs at 29.3ms in automatic, and 2.6ms in interactive mode, making it 10x and 100x faster than Polygon-RNN++.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司