亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing approaches to video understanding, mainly designed for short videos from a third-person perspective, are limited in their applicability in certain fields, such as robotics. In this paper, we delve into open-ended question-answering (QA) in long, egocentric videos, which allows individuals or robots to inquire about their own past visual experiences. This task presents unique challenges, including the complexity of temporally grounding queries within extensive video content, the high resource demands for precise data annotation, and the inherent difficulty of evaluating open-ended answers due to their ambiguous nature. Our proposed approach tackles these challenges by (i) integrating query grounding and answering within a unified model to reduce error propagation; (ii) employing large language models for efficient and scalable data synthesis; and (iii) introducing a close-ended QA task for evaluation, to manage answer ambiguity. Extensive experiments demonstrate the effectiveness of our method, which also achieves state-of-the-art performance on the QAEgo4D and Ego4D-NLQ benchmarks. We plan to publicly release the codes, model, and constructed datasets for future research.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

The increasing usage of Artificial Intelligence (AI) models, especially Deep Neural Networks (DNNs), is increasing the power consumption during training and inference, posing environmental concerns and driving the need for more energy-efficient algorithms and hardware solutions. This work addresses the growing energy consumption problem in Machine Learning (ML), particularly during the inference phase. Even a slight reduction in power usage can lead to significant energy savings, benefiting users, companies, and the environment. Our approach focuses on maximizing the accuracy of Artificial Neural Network (ANN) models using a neuroevolutionary framework whilst minimizing their power consumption. To do so, power consumption is considered in the fitness function. We introduce a new mutation strategy that stochastically reintroduces modules of layers, with power-efficient modules having a higher chance of being chosen. We introduce a novel technique that allows training two separate models in a single training step whilst promoting one of them to be more power efficient than the other while maintaining similar accuracy. The results demonstrate a reduction in power consumption of ANN models by up to 29.2% without a significant decrease in predictive performance.

While traditional video representations are organized around discrete image frames, event-based video is a new paradigm that forgoes image frames altogether. Rather, pixel samples are temporally asynchronous and independent of one another. Until now, researchers have lacked a cohesive software framework for exploring the representation, compression, and applications of event-based video. I present the AD$\Delta$ER software suite to fill this gap. This framework includes utilities for transcoding framed and multimodal event-based video sources to a common representation, rate control mechanisms, lossy compression, application support, and an interactive GUI for transcoding and playback. In this paper, I describe these various software components and their usage.

Model generalizability to unseen datasets, concerned with in-the-wild robustness, is less studied for indoor single-image depth prediction. We leverage gradient-based meta-learning for higher generalizability on zero-shot cross-dataset inference. Unlike the most-studied image classification in meta-learning, depth is pixel-level continuous range values, and mappings from each image to depth vary widely across environments. Thus no explicit task boundaries exist. We instead propose fine-grained task that treats each RGB-D pair as a task in our meta-optimization. We first show meta-learning on limited data induces much better prior (max +29.4\%). Using meta-learned weights as initialization for following supervised learning, without involving extra data or information, it consistently outperforms baselines without the method. Compared to most indoor-depth methods that only train/ test on a single dataset, we propose zero-shot cross-dataset protocols, closely evaluate robustness, and show consistently higher generalizability and accuracy by our meta-initialization. The work at the intersection of depth and meta-learning potentially drives both research streams to step closer to practical use.

Preventing the spread of misinformation is challenging. The detection of misleading content presents a significant hurdle due to its extreme linguistic and domain variability. Content-based models have managed to identify deceptive language by learning representations from textual data such as social media posts and web articles. However, aggregating representative samples of this heterogeneous phenomenon and implementing effective real-world applications is still elusive. Based on analytical work on the language of misinformation, this paper analyzes the linguistic attributes that characterize this phenomenon and how representative of such features some of the most popular misinformation datasets are. We demonstrate that the appropriate use of pertinent symbolic knowledge in combination with neural language models is helpful in detecting misleading content. Our results achieve state-of-the-art performance in misinformation datasets across the board, showing that our approach offers a valid and robust alternative to multi-task transfer learning without requiring any additional training data. Furthermore, our results show evidence that structured knowledge can provide the extra boost required to address a complex and unpredictable real-world problem like misinformation detection, not only in terms of accuracy but also time efficiency and resource utilization.

Recently, text-to-image diffusion models have demonstrated impressive ability to generate high-quality images conditioned on the textual input. However, these models struggle to accurately adhere to textual instructions regarding spatial layout information. While previous research has primarily focused on aligning cross-attention maps with layout conditions, they overlook the impact of the initialization noise on the layout guidance. To achieve better layout control, we propose leveraging a spatial-aware initialization noise during the denoising process. Specifically, we find that the inverted reference image with finite inversion steps contains valuable spatial awareness regarding the object's position, resulting in similar layouts in the generated images. Based on this observation, we develop an open-vocabulary framework to customize a spatial-aware initialization noise for each layout condition. Without modifying other modules except the initialization noise, our approach can be seamlessly integrated as a plug-and-play module within other training-free layout guidance frameworks. We evaluate our approach quantitatively and qualitatively on the available Stable Diffusion model and COCO dataset. Equipped with the spatial-aware latent initialization, our method significantly improves the effectiveness of layout guidance while preserving high-quality content.

In the realm of recommender systems, handling noisy implicit feedback is a prevalent challenge. While most research efforts focus on mitigating noise through data cleaning methods like resampling and reweighting, these approaches often rely on heuristic assumptions. Alternatively, model perspective denoising strategies actively incorporate noise into user-item interactions, aiming to bolster the model's inherent denoising capabilities. Nonetheless, this type of denoising method presents substantial challenges to the capacity of the recommender model to accurately identify and represent noise patterns. To overcome these hurdles, we introduce a plug-in diffusion model for embedding denoising in recommendation system, which employs a multi-step denoising approach based on diffusion models to foster robust representation learning of embeddings. Our model operates by introducing controlled Gaussian noise into user and item embeddings derived from various recommender systems during the forward phase. Subsequently, it iteratively eliminates this noise in the reverse denoising phase, thereby augmenting the embeddings' resilience to noisy feedback. The primary challenge in this process is determining direction and an optimal starting point for the denoising process. To address this, we incorporate a specialized denoising module that utilizes collaborative data as a guide for the denoising process. Furthermore, during the inference phase, we employ the average of item embeddings previously favored by users as the starting point to facilitate ideal item generation. Our thorough evaluations across three datasets and in conjunction with three classic backend models confirm its superior performance.

Overlapping cameras offer exciting opportunities to view a scene from different angles, allowing for more advanced, comprehensive and robust analysis. However, existing visual analytics systems for multi-camera streams are mostly limited to (i) per-camera processing and aggregation and (ii) workload-agnostic centralized processing architectures. In this paper, we present Argus, a distributed video analytics system with cross-camera collaboration on smart cameras. We identify multi-camera, multi-target tracking as the primary task of multi-camera video analytics and develop a novel technique that avoids redundant, processing-heavy identification tasks by leveraging object-wise spatio-temporal association in the overlapping fields of view across multiple cameras. We further develop a set of techniques to perform these operations across distributed cameras without cloud support at low latency by (i) dynamically ordering the camera and object inspection sequence and (ii) flexibly distributing the workload across smart cameras, taking into account network transmission and heterogeneous computational capacities. Evaluation of three real-world overlapping camera datasets with two Nvidia Jetson devices shows that Argus reduces the number of object identifications and end-to-end latency by up to 7.13x and 2.19x (4.86x and 1.60x compared to the state-of-the-art), while achieving comparable tracking quality.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.

北京阿比特科技有限公司