亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Answering numerical questions over hybrid contents from the given tables and text(TextTableQA) is a challenging task. Recently, Large Language Models (LLMs) have gained significant attention in the NLP community. With the emergence of large language models, In-Context Learning and Chain-of-Thought prompting have become two particularly popular research topics in this field. In this paper, we introduce a new prompting strategy called Hybrid prompt strategy and Retrieval of Thought for TextTableQA. Through In-Context Learning, we prompt the model to develop the ability of retrieval thinking when dealing with hybrid data. Our method achieves superior performance compared to the fully-supervised SOTA on the MultiHiertt dataset in the few-shot setting.

相關內容

Coupled multi-physics problems are encountered in countless applications and pose significant numerical challenges. Although monolithic approaches offer possibly the best solution strategy, they often require ad-hoc preconditioners and numerical implementations. Sequential (also known as splitted, partitioned or segregated) approaches are iterative methods for solving coupled problems where each equation is solved independently and the coupling is achieved through iterations. These methods offer the possibility to flexibly add or remove equations from a model and to rely on existing black-box solvers for every specific equation. Furthermore, when problems are non-linear, inner iterations need to be performed even in monolithic solvers, therefore making a sequential iterative approach a viable alternative. The cost of running inner iterations to achieve the coupling, however, could easily becomes prohibitive, or, in some cases the iterations might not converge. In this work we present a general formulation of splitting schemes for continuous operators, with arbitrary implicit/explicit splitting, like in standard iterative methods for linear systems. By introducing a generic relaxation operator we find the conditions for the convergence of the iterative schemes. We show how the relaxation operator can be thought as a preconditioner and constructed based on an approximate Schur-complement. We propose a Schur-based Partial Jacobi relaxation operator to stabilise the coupling and show its effectiveness. Although we mainly focus on scalar-scalar linear problems, most results are easily extended to non-linear and higher-dimensional problems. Numerical tests (1D and 2D) for two PDE systems, namely the Dual-Porosity model and a Quad-Laplacian operator, are carried out to confirm the theoretical results.

Machine learning (ML) has employed various discretization methods to partition numerical attributes into intervals. However, an effective discretization technique remains elusive in many ML applications, such as association rule mining. Moreover, the existing discretization techniques do not reflect best the impact of the independent numerical factor on the dependent numerical target factor. This research aims to establish a benchmark approach for numerical attribute partitioning. We conduct an extensive analysis of human perceptions of partitioning a numerical attribute and compare these perceptions with the results obtained from our two proposed measures. We also examine the perceptions of experts in data science, statistics, and engineering by employing numerical data visualization techniques. The analysis of collected responses reveals that $68.7\%$ of human responses approximately closely align with the values generated by our proposed measures. Based on these findings, our proposed measures may be used as one of the methods for discretizing the numerical attributes.

Cross-lingual transfer learning from high-resource to medium and low-resource languages has shown encouraging results. However, the scarcity of resources in target languages remains a challenge. In this work, we resort to data augmentation and continual pre-training for domain adaptation to improve cross-lingual abusive language detection. For data augmentation, we analyze two existing techniques based on vicinal risk minimization and propose MIXAG, a novel data augmentation method which interpolates pairs of instances based on the angle of their representations. Our experiments involve seven languages typologically distinct from English and three different domains. The results reveal that the data augmentation strategies can enhance few-shot cross-lingual abusive language detection. Specifically, we observe that consistently in all target languages, MIXAG improves significantly in multidomain and multilingual environments. Finally, we show through an error analysis how the domain adaptation can favour the class of abusive texts (reducing false negatives), but at the same time, declines the precision of the abusive language detection model.

Homomorphic encryption (HE) is a privacy-preserving computation technique that enables computation on encrypted data. Today, the potential of HE remains largely unrealized as it is impractically slow, preventing it from being used in real applications. A major computational bottleneck in HE is the key-switching operation, accounting for approximately 70% of the overall HE execution time and involving a large amount of data for inputs, intermediates, and keys. Prior research has focused on hardware accelerators to improve HE performance, typically featuring large on-chip SRAMs and high off-chip bandwidth to deal with large scale data. In this paper, we present a novel approach to improve key-switching performance by rigorously analyzing its dataflow. Our primary goal is to optimize data reuse with limited on-chip memory to minimize off-chip data movement. We introduce three distinct dataflows: Max-Parallel (MP), Digit-Centric (DC), and Output-Centric (OC), each with unique scheduling approaches for key-switching computations. Through our analysis, we show how our proposed Output-Centric technique can effectively reuse data by significantly lowering the intermediate key-switching working set and alleviating the need for massive off-chip bandwidth. We thoroughly evaluate the three dataflows using the RPU, a recently published vector processor tailored for ring processing algorithms, which includes HE. This evaluation considers sweeps of bandwidth and computational throughput, and whether keys are buffered on-chip or streamed. With OC, we demonstrate up to 4.16x speedup over the MP dataflow and show how OC can save 16x on-chip SRAM by streaming keys for minimal performance penalty.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Recently, Self-Supervised Representation Learning (SSRL) has attracted much attention in the field of computer vision, speech, natural language processing (NLP), and recently, with other types of modalities, including time series from sensors. The popularity of self-supervised learning is driven by the fact that traditional models typically require a huge amount of well-annotated data for training. Acquiring annotated data can be a difficult and costly process. Self-supervised methods have been introduced to improve the efficiency of training data through discriminative pre-training of models using supervisory signals that have been freely obtained from the raw data. Unlike existing reviews of SSRL that have pre-dominately focused upon methods in the fields of CV or NLP for a single modality, we aim to provide the first comprehensive review of multimodal self-supervised learning methods for temporal data. To this end, we 1) provide a comprehensive categorization of existing SSRL methods, 2) introduce a generic pipeline by defining the key components of a SSRL framework, 3) compare existing models in terms of their objective function, network architecture and potential applications, and 4) review existing multimodal techniques in each category and various modalities. Finally, we present existing weaknesses and future opportunities. We believe our work develops a perspective on the requirements of SSRL in domains that utilise multimodal and/or temporal data

The content based image retrieval aims to find the similar images from a large scale dataset against a query image. Generally, the similarity between the representative features of the query image and dataset images is used to rank the images for retrieval. In early days, various hand designed feature descriptors have been investigated based on the visual cues such as color, texture, shape, etc. that represent the images. However, the deep learning has emerged as a dominating alternative of hand-designed feature engineering from a decade. It learns the features automatically from the data. This paper presents a comprehensive survey of deep learning based developments in the past decade for content based image retrieval. The categorization of existing state-of-the-art methods from different perspectives is also performed for greater understanding of the progress. The taxonomy used in this survey covers different supervision, different networks, different descriptor type and different retrieval type. A performance analysis is also performed using the state-of-the-art methods. The insights are also presented for the benefit of the researchers to observe the progress and to make the best choices. The survey presented in this paper will help in further research progress in image retrieval using deep learning.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.

北京阿比特科技有限公司