亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study the application of spatially coupled LDPC codes with sub-block locality for space division multiplexing. We focus on the information exchange between the sub-blocks and compare decoding strategies with respect to the complexity, performance and the information flow.

相關內容

In the present paper, we introduce a new method for the automated generation of residential distribution grid models based on novel building load estimation methods and a two-stage optimization for the generation of the 20 kV and 400 V grid topologies. Using the introduced load estimation methods, various open or proprietary data sources can be utilized to estimate the load of residential buildings. These data sources include available building footprints from OpenStreetMap, 3D building data from OSM Buildings, and the number of electricity meters per address provided by the respective distribution system operator (DSO). For the evaluation of the introduced methods, we compare the resulting grid models by utilizing different available data sources for a specific suburban residential area and the real grid topology provided by the DSO. This evaluation yields two key findings: First, the automated 20 kV network generation methodology works well when compared to the real network. Second, the utilization of public 3D building data for load estimation significantly increases the resulting model accuracy compared to 2D data and enables results similar to models based on DSO-supplied meter data. This substantially reduces the dependence on such normally proprietary data.

We study the problem of identifying the unknown intervention targets in structural causal models where we have access to heterogeneous data collected from multiple environments. The unknown intervention targets are the set of endogenous variables whose corresponding exogenous noises change across the environments. We propose a two-phase approach which in the first phase recovers the exogenous noises corresponding to unknown intervention targets whose distributions have changed across environments. In the second phase, the recovered noises are matched with the corresponding endogenous variables. For the recovery phase, we provide sufficient conditions for learning these exogenous noises up to some component-wise invertible transformation. For the matching phase, under the causal sufficiency assumption, we show that the proposed method uniquely identifies the intervention targets. In the presence of latent confounders, the intervention targets among the observed variables cannot be determined uniquely. We provide a candidate intervention target set which is a superset of the true intervention targets. Our approach improves upon the state of the art as the returned candidate set is always a subset of the target set returned by previous work. Moreover, we do not require restrictive assumptions such as linearity of the causal model or performing invariance tests to learn whether a distribution is changing across environments which could be highly sample inefficient. Our experimental results show the effectiveness of our proposed algorithm in practice.

Learning methods in Banach spaces are often formulated as regularization problems which minimize the sum of a data fidelity term in a Banach norm and a regularization term in another Banach norm. Due to the infinite dimensional nature of the space, solving such regularization problems is challenging. We construct a direct sum space based on the Banach spaces for the data fidelity term and the regularization term, and then recast the objective function as the norm of a suitable quotient space of the direct sum space. In this way, we express the original regularized problem as an unregularized problem on the direct sum space, which is in turn reformulated as a dual optimization problem in the dual space of the direct sum space. The dual problem is to find the maximum of a linear function on a convex polytope, which may be solved by linear programming. A solution of the original problem is then obtained by using related extremal properties of norming functionals from a solution of the dual problem. Numerical experiments are included to demonstrate that the proposed duality approach leads to an implementable numerical method for solving the regularization learning problems.

In this paper, we study the problem of optimizing a linear program whose variables are the answers to a conjunctive query. For this we propose the language LP(CQ) for specifying linear programs whose constraints and objective functions depend on the answer sets of conjunctive queries. We contribute an efficient algorithm for solving programs in a fragment of LP(CQ). The natural approach constructs a linear program having as many variables as there are elements in the answer set of the queries. Our approach constructs a linear program having the same optimal value but fewer variables. This is done by exploiting the structure of the conjunctive queries using generalized hypertree decompositions of small width to factorize elements of the answer set together. We illustrate the various applications of LP(CQ) programs on three examples: optimizing deliveries of resources, minimizing noise for differential privacy, and computing the s-measure of patterns in graphs as needed for data mining.

In this paper, we propose a novel model to analyze serially correlated two-dimensional functional data observed sparsely and irregularly on a domain which may not be a rectangle. Our approach employs a mixed effects model that specifies the principal component functions as bivariate splines on triangulations and the principal component scores as random effects which follow an auto-regressive model. We apply the thin-plate penalty for regularizing the bivariate function estimation and develop an effective EM algorithm along with Kalman filter and smoother for calculating the penalized likelihood estimates of the parameters. Our approach was applied on simulated datasets and on Texas monthly average temperature data from January year 1915 to December year 2014.

Semantic segmentation enables robots to perceive and reason about their environments beyond geometry. Most of such systems build upon deep learning approaches. As autonomous robots are commonly deployed in initially unknown environments, pre-training on static datasets cannot always capture the variety of domains and limits the robot's perception performance during missions. Recently, self-supervised and fully supervised active learning methods emerged to improve a robot's vision. These approaches rely on large in-domain pre-training datasets or require substantial human labelling effort. We propose a planning method for semi-supervised active learning of semantic segmentation that substantially reduces human labelling requirements compared to fully supervised approaches. We leverage an adaptive map-based planner guided towards the frontiers of unexplored space with high model uncertainty collecting training data for human labelling. A key aspect of our approach is to combine the sparse high-quality human labels with pseudo labels automatically extracted from highly certain environment map areas. Experimental results show that our method reaches segmentation performance close to fully supervised approaches with drastically reduced human labelling effort while outperforming self-supervised approaches.

This paper addresses the question whether model knowledge can guide a defender to appropriate decisions, or not, when an attacker intrudes into control systems. The model-based defense scheme considered in this study, namely Bayesian defense mechanism, chooses reasonable reactions through observation of the system's behavior using models of the system's stochastic dynamics, the vulnerability to be exploited, and the attacker's objective. On the other hand, rational attackers take deceptive strategies for misleading the defender into making inappropriate decisions. In this paper, their dynamic decision making is formulated as a stochastic signaling game. It is shown that the belief of the true scenario has a limit in a stochastic sense at an equilibrium based on martingale analysis. This fact implies that there are only two possible cases: the defender asymptotically detects the attack with a firm belief, or the attacker takes actions such that the system's behavior becomes nominal after a finite time step. Consequently, if different scenarios result in different stochastic behaviors, the Bayesian defense mechanism guarantees the system to be secure in an asymptotic manner provided that effective countermeasures are implemented. As an application of the finding, a defensive deception utilizing asymmetric recognition of vulnerabilities exploited by the attacker is analyzed. It is shown that the attacker possibly stops the attack even if the defender is unaware of the exploited vulnerabilities as long as the defender's unawareness is concealed by the defensive deception.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司