In empirical science, many variables of interest are categorical. Like any model, models for categorical responses can be misspecified, leading to possibly large biases in estimation. One particularly troublesome source of misspecification is inattentive responding in questionnaires, which is well-known to jeopardize the validity of structural equation models (SEMs) and other survey-based analyses. I propose a general estimator that is designed to be robust to misspecification of models for categorical responses. Unlike hitherto approaches, the estimator makes no assumption whatsoever on the degree, magnitude, or type of misspecification. The proposed estimator generalizes maximum likelihood estimation, is strongly consistent, asymptotically Gaussian, has the same time complexity as maximum likelihood, and can be applied to any model for categorical responses. In addition, I develop a novel test that tests whether a given response can be fitted well by the assumed model, which allows one to trace back possible sources of misspecification. I verify the attractive theoretical properties of the proposed methodology in Monte Carlo experiments, and demonstrate its practical usefulness in an empirical application on a SEM of personality traits, where I find compelling evidence for the presence of inattentive responding whose adverse effects the proposed estimator can withstand, unlike maximum likelihood.
Building on the standard theory of process algebra with priorities, we identify a new scheduling mechanism, called "constructive reduction" which is designed to capture the essence of synchronous programming. The distinctive property of this evaluation strategy is to achieve determinacy-by-construction for multi-cast concurrent communication with shared memory. In the technical setting of CCS extended by clocks and priorities, we prove for a large class of "coherent" processes a confluence property for constructive reductions. We show that under some restrictions, called "pivotability", coherence is preserved by the operators of prefix, summation, parallel composition, restriction and hiding. Since this permits memory and sharing, we are able to cover a strictly larger class of processes compared to those in Milner's classical confluence theory for CCS without priorities.
As the deployment of NLP systems in critical applications grows, ensuring the robustness of large language models (LLMs) against adversarial attacks becomes increasingly important. Large language models excel in various NLP tasks but remain vulnerable to low-cost adversarial attacks. Focusing on the domain of conversation entailment, where multi-turn dialogues serve as premises to verify hypotheses, we fine-tune a transformer model to accurately discern the truthfulness of these hypotheses. Adversaries manipulate hypotheses through synonym swapping, aiming to deceive the model into making incorrect predictions. To counteract these attacks, we implemented innovative fine-tuning techniques and introduced an embedding perturbation loss method to significantly bolster the model's robustness. Our findings not only emphasize the importance of defending against adversarial attacks in NLP but also highlight the real-world implications, suggesting that enhancing model robustness is critical for reliable NLP applications.
In practice, many machine learning (ML) problems come with constraints, and their applied domains involve distributed sensitive data that cannot be shared with others, e.g., in healthcare. Collaborative learning in such practical scenarios entails federated learning (FL) for ML problems with constraints, or FL with constraints for short. Despite the extensive developments of FL techniques in recent years, these techniques only deal with unconstrained FL problems or FL problems with simple constraints that are amenable to easy projections. There is little work dealing with FL problems with general constraints. To fill this gap, we take the first step toward building an algorithmic framework for solving FL problems with general constraints. In particular, we propose a new FL algorithm for constrained ML problems based on the proximal augmented Lagrangian (AL) method. Assuming convex objective and convex constraints plus other mild conditions, we establish the worst-case complexity of the proposed algorithm. Our numerical experiments show the effectiveness of our algorithm in performing Neyman-Pearson classification and fairness-aware learning with nonconvex constraints, in an FL setting.
Classification of movement trajectories has many applications in transportation. Supervised neural models represent the current state-of-the-art. Recent security applications require this task to be rapidly employed in environments that may differ from the data used to train such models for which there is little training data. We provide a neuro-symbolic rule-based framework to conduct error correction and detection of these models to support eventual deployment in security applications. We provide a suite of experiments on several recent and state-of-the-art models and show an accuracy improvement of 1.7% over the SOTA model in the case where all classes are present in training and when 40% of classes are omitted from training, we obtain a 5.2% improvement (zero-shot) and 23.9% (few-shot) improvement over the SOTA model without resorting to retraining of the base model.
By training on text in various languages, large language models (LLMs) typically possess multilingual support and demonstrate remarkable capabilities in solving tasks described in different languages. However, LLMs can exhibit linguistic discrimination due to the uneven distribution of training data across languages. That is, LLMs are hard to keep the consistency of responses when faced with the same task but depicted in different languages. In this study, we first explore the consistency in the LLMs' outputs responding to queries in various languages from two aspects: safety and quality. We conduct this analysis with two datasets (AdvBench and NQ) based on four LLMs (Llama2-13b, Gemma-7b, GPT-3.5-turbo and Gemini-pro). The results show that LLMs exhibit stronger human alignment capabilities with queries in English, French, Russian, and Spanish (only 1.04\% of harmful queries successfully jailbreak on average) compared to queries in Bengali, Georgian, Nepali and Maithili (27.7\% of harmful queries jailbreak successfully on average). Moreover, for queries in English, Danish, Czech and Slovenian, LLMs tend to produce responses with a higher quality (with 0.1494 $F_1$ score on average) compared to the other languages. Upon these findings, we propose LDFighter, a similarity-based voting, to mitigate the linguistic discrimination in LLMs. LDFighter ensures consistent service for different language speakers. We evaluate LDFighter with both benign queries and harmful queries. The results show that LDFighter not only significantly reduces the jailbreak success rate but also improve the response quality on average, demonstrating its effectiveness.
Human-created works represent critical data inputs to artificial intelligence (AI). Strategic behavior can play a major role for AI training datasets, be it in limiting access to existing works or in deciding which types of new works to create or whether to create new works at all. We examine creators' behavioral change when their works become training data for AI. Specifically, we focus on contributors on Unsplash, a popular stock image platform with about 6 million high-quality photos and illustrations. In the summer of 2020, Unsplash launched an AI research program by releasing a dataset of 25,000 images for commercial use. We study contributors' reactions, comparing contributors whose works were included in this dataset to contributors whose works were not included. Our results suggest that treated contributors left the platform at a higher-than-usual rate and substantially slowed down the rate of new uploads. Professional and more successful photographers react stronger than amateurs and less successful photographers. We also show that affected users changed the variety and novelty of contributions to the platform, with long-run implications for the stock of works potentially available for AI training. Taken together, our findings highlight the trade-off between interests of rightsholders and promoting innovation at the technological frontier. We discuss implications for copyright and AI policy.
Non-malleable extractors are generalizations and strengthening of standard randomness extractors, that are resilient to adversarial tampering. Such extractors have wide applications in cryptography and explicit construction of extractors. In the well-studied models of two-source and affine non-malleable extractors, the previous best constructions only work for entropy rate $>2/3$ and $1-\gamma$ respectively by Li (FOCS' 23). We present explicit constructions of two-source and affine non-malleable extractors that match the state-of-the-art constructions of standard ones for small entropy. Our main results include two-source and affine non-malleable extractors (over $\mathsf{F}_2$) for sources on $n$ bits with min-entropy $k \ge \log^C n$ and polynomially small error, matching the parameters of standard extractors by Chattopadhyay and Zuckerman (STOC' 16, Annals of Mathematics' 19) and Li (FOCS' 16), as well as those with min-entropy $k = O(\log n)$ and constant error, matching the parameters of standard extractors by Li (FOCS' 23). Our constructions significantly improve previous results, and the parameters (entropy requirement and error) are the best possible without first improving the constructions of standard extractors. In addition, our improved affine non-malleable extractors give strong lower bounds for a certain kind of read-once linear branching programs, recently introduced by Gryaznov, Pudl\'{a}k, and Talebanfard (CCC' 22) as a generalization of several well-studied computational models. These bounds match the previously best-known average-case hardness results given by Chattopadhyay and Liao (CCC' 23) and Li (FOCS' 23), where the branching program size lower bounds are close to optimal, but the explicit functions we use here are different.\ Our results also suggest a possible deeper connection between non-malleable extractors and standard ones.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.