亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study develops an asymptotic theory for estimating the time-varying characteristics of locally stationary functional time series (LSFTS). We investigate a kernel-based method to estimate the time-varying covariance operator and the time-varying mean function of an LSFTS. In particular, we derive the convergence rate of the kernel estimator of the covariance operator and associated eigenvalue and eigenfunctions and establish a central limit theorem for the kernel-based locally weighted sample mean. As applications of our results, we discuss methods for testing the equality of time-varying mean functions in two functional samples.

相關內容

We observe n possibly dependent random variables, the distribution of which is presumed to be stationary even though this might not be true, and we aim at estimating the stationary distribution. We establish a non-asymptotic deviation bound for the Hellinger distance between the target distribution and our estimator. If the dependence within the observations is small, the estimator performs as good as if the data were independent and identically distributed. In addition our estimator is robust to misspecification and contamination. If the dependence is too high but the observed process is mixing, we can select a subset of observations that is almost independent and retrieve results similar to what we have in the i.i.d. case. We apply our procedure to the estimation of the invariant distribution of a diffusion process and to finite state space hidden Markov models.

We study the effect of approximation errors in assessing the extreme behaviour of univariate functionals of random objects. We build our framework into a general setting where estimation of the extreme value index and extreme quantiles of the functional is based on some approximated value instead of the true one. As an example, we consider the effect of discretisation errors in computation of the norms of paths of stochastic processes. In particular, we quantify connections between the sample size $n$ (the number of observed paths), the number of the discretisation points $m$, and the modulus of continuity function $\phi$ describing the path continuity of the underlying stochastic process. As an interesting example fitting into our framework, we consider processes of form $Y(t) = \mathcal{R}Z(t)$, where $\mathcal{R}$ is a heavy-tailed random variable and the increments of the process $Z$ have lighter tails compared to $\mathcal{R}$.

We present an efficient matrix-free point spread function (PSF) method for approximating operators that have locally supported non-negative integral kernels. The method computes impulse responses of the operator at scattered points, and interpolates these impulse responses to approximate integral kernel entries. Impulse responses are computed by applying the operator to Dirac comb batches of point sources, which are chosen by solving an ellipsoid packing problem. Evaluation of kernel entries allows us to construct a hierarchical matrix (H-matrix) approximation of the operator. Further matrix computations are performed with H-matrix methods. We use the method to build preconditioners for the Hessian operator in two inverse problems governed by partial differential equations (PDEs): inversion for the basal friction coefficient in an ice sheet flow problem and for the initial condition in an advective-diffusive transport problem. While for many ill-posed inverse problems the Hessian of the data misfit term exhibits a low rank structure, and hence a low rank approximation is suitable, for many problems of practical interest the numerical rank of the Hessian is still large. But Hessian impulse responses typically become more local as the numerical rank increases, which benefits the PSF method. Numerical results reveal that the PSF preconditioner clusters the spectrum of the preconditioned Hessian near one, yielding roughly 5x-10x reductions in the required number of PDE solves, as compared to regularization preconditioning and no preconditioning. We also present a numerical study for the influence of various parameters (that control the shape of the impulse responses) on the effectiveness of the advection-diffusion Hessian approximation. The results show that the PSF-based preconditioners are able to form good approximations of high-rank Hessians using a small number of operator applications.

This paper is devoted to the statistical and numerical properties of the geometric median, and its applications to the problem of robust mean estimation via the median of means principle. Our main theoretical results include (a) an upper bound for the distance between the mean and the median for general absolutely continuous distributions in R^d, and examples of specific classes of distributions for which these bounds do not depend on the ambient dimension $d$; (b) exponential deviation inequalities for the distance between the sample and the population versions of the geometric median, which again depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we deduce improved bounds for the (geometric) median of means estimator that hold for large classes of heavy-tailed distributions. Finally, we address the error of numerical approximation, which is an important practical aspect of any statistical estimation procedure. We demonstrate that the objective function minimized by the geometric median satisfies a "local quadratic growth" condition that allows one to translate suboptimality bounds for the objective function to the corresponding bounds for the numerical approximation to the median itself. As a corollary, we propose a simple stopping rule (applicable to any optimization method) which yields explicit error guarantees. We conclude with the numerical experiments including the application to estimation of mean values of log-returns for S&P 500 data.

In this paper, we prove that functional sliced inverse regression (FSIR) achieves the optimal (minimax) rate for estimating the central space in functional sufficient dimension reduction problems. First, we provide a concentration inequality for the FSIR estimator of the covariance of the conditional mean, i.e., $\var(\E[\boldsymbol{X}\mid Y])$. Based on this inequality, we establish the root-$n$ consistency of the FSIR estimator of the image of $\var(\E[\boldsymbol{X}\mid Y])$. Second, we apply the most widely used truncated scheme to estimate the inverse of the covariance operator and identify the truncation parameter which ensures that FSIR can achieve the optimal minimax convergence rate for estimating the central space. Finally, we conduct simulations to demonstrate the optimal choice of truncation parameter and the estimation efficiency of FSIR. To the best of our knowledge, this is the first paper to rigorously prove the minimax optimality of FSIR in estimating the central space for multiple-index models and general $Y$ (not necessarily discrete).

A novel method for noise reduction in the setting of curve time series with error contamination is proposed, based on extending the framework of functional principal component analysis (FPCA). We employ the underlying, finite-dimensional dynamics of the functional time series to separate the serially dependent dynamical part of the observed curves from the noise. Upon identifying the subspaces of the signal and idiosyncratic components, we construct a projection of the observed curve time series along the noise subspace, resulting in an estimate of the underlying denoised curves. This projection is optimal in the sense that it minimizes the mean integrated squared error. By applying our method to similated and real data, we show the denoising estimator is consistent and outperforms existing denoising techniques. Furthermore, we show it can be used as a pre-processing step to improve forecasting.

We consider the problem of empirical Bayes estimation for (multivariate) Poisson means. Existing solutions that have been shown theoretically optimal for minimizing the regret (excess risk over the Bayesian oracle that knows the prior) have several shortcomings. For example, the classical Robbins estimator does not retain the monotonicity property of the Bayes estimator and performs poorly under moderate sample size. Estimators based on the minimum distance and non-parametric maximum likelihood (NPMLE) methods correct these issues, but are computationally expensive with complexity growing exponentially with dimension. Extending the approach of Barbehenn and Zhao (2022), in this work we construct monotone estimators based on empirical risk minimization (ERM) that retain similar theoretical guarantees and can be computed much more efficiently. Adapting the idea of offset Rademacher complexity Liang et al. (2015) to the non-standard loss and function class in empirical Bayes, we show that the shape-constrained ERM estimator attains the minimax regret within constant factors in one dimension and within logarithmic factors in multiple dimensions.

Probability density estimation is a core problem of statistics and signal processing. Moment methods are an important means of density estimation, but they are generally strongly dependent on the choice of feasible functions, which severely affects the performance. In this paper, we propose a non-classical parametrization for density estimation using sample moments, which does not require the choice of such functions. The parametrization is induced by the squared Hellinger distance, and the solution of it, which is proved to exist and be unique subject to a simple prior that does not depend on data, and can be obtained by convex optimization. Statistical properties of the density estimator, together with an asymptotic error upper bound are proposed for the estimator by power moments. Applications of the proposed density estimator in signal processing tasks are given. Simulation results validate the performance of the estimator by a comparison to several prevailing methods. To the best of our knowledge, the proposed estimator is the first one in the literature for which the power moments up to an arbitrary even order exactly match the sample moments, while the true density is not assumed to fall within specific function classes.

Synthetic time series are often used in practical applications to augment the historical time series dataset for better performance of machine learning algorithms, amplify the occurrence of rare events, and also create counterfactual scenarios described by the time series. Distributional-similarity (which we refer to as realism) as well as the satisfaction of certain numerical constraints are common requirements in counterfactual time series scenario generation requests. For instance, the US Federal Reserve publishes synthetic market stress scenarios given by the constrained time series for financial institutions to assess their performance in hypothetical recessions. Existing approaches for generating constrained time series usually penalize training loss to enforce constraints, and reject non-conforming samples. However, these approaches would require re-training if we change constraints, and rejection sampling can be computationally expensive, or impractical for complex constraints. In this paper, we propose a novel set of methods to tackle the constrained time series generation problem and provide efficient sampling while ensuring the realism of generated time series. In particular, we frame the problem using a constrained optimization framework and then we propose a set of generative methods including ``GuidedDiffTime'', a guided diffusion model to generate realistic time series. Empirically, we evaluate our work on several datasets for financial and energy data, where incorporating constraints is critical. We show that our approaches outperform existing work both qualitatively and quantitatively. Most importantly, we show that our ``GuidedDiffTime'' model is the only solution where re-training is not necessary for new constraints, resulting in a significant carbon footprint reduction.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司