The problem of classifying turbulent environments from partial observation is key for some theoretical and applied fields, from engineering to earth observation and astrophysics, e.g. to precondition searching of optimal control policies in different turbulent backgrounds, to predict the probability of rare events and/or to infer physical parameters labelling different turbulent set-ups. To achieve such goal one can use different tools depending on the system's knowledge and on the quality and quantity of the accessible data. In this context, we assume to work in a model-free setup completely blind to all dynamical laws, but with a large quantity of (good quality) data for training. As a prototype of complex flows with different attractors, and different multi-scale statistical properties we selected 10 turbulent 'ensembles' by changing the rotation frequency of the frame of reference of the 3d domain and we suppose to have access to a set of partial observations limited to the instantaneous kinetic energy distribution in a 2d plane, as it is often the case in geophysics and astrophysics. We compare results obtained by a Machine Learning (ML) approach consisting of a state-of-the-art Deep Convolutional Neural Network (DCNN) against Bayesian inference which exploits the information on velocity and enstrophy moments. First, we discuss the supremacy of the ML approach, presenting also results at changing the number of training data and of the hyper-parameters. Second, we present an ablation study on the input data aimed to perform a ranking on the importance of the flow features used by the DCNN, helping to identify the main physical contents used by the classifier. Finally, we discuss the main limitations of such data-driven methods and potential interesting applications.
The deployment of machine learning models in safety-critical applications comes with the expectation that such models will perform well over a range of contexts (e.g., a vision model for classifying street signs should work in rural, city, and highway settings under varying lighting/weather conditions). However, these one-size-fits-all models are typically optimized for average case performance, encouraging them to achieve high performance in nominal conditions but exposing them to unexpected behavior in challenging or rare contexts. To address this concern, we develop a new method for training context-dependent models. We extend Bridge-Mode Connectivity (BMC) (Garipov et al., 2018) to train an infinite ensemble of models over a continuous measure of context such that we can sample model parameters specifically tuned to the corresponding evaluation context. We explore the definition of context in image classification tasks through multiple lenses including changes in the risk profile, long-tail image statistics/appearance, and context-dependent distribution shift. We develop novel extensions of the BMC optimization for each of these cases and our experiments demonstrate that model performance can be successfully tuned to context in each scenario.
Deep reinforcement learning has achieved great success in various fields with its super decision-making ability. However, the policy learning process requires a large amount of training time, causing energy consumption. Inspired by the redundancy of neural networks, we propose a lightweight parallel training framework based on neural network compression, AcceRL, to accelerate the policy learning while ensuring policy quality. Specifically, AcceRL speeds up the experience collection by flexibly combining various neural network compression methods. Overall, the AcceRL consists of five components, namely Actor, Learner, Compressor, Corrector, and Monitor. The Actor uses the Compressor to compress the Learner's policy network to interact with the environment. And the generated experiences are transformed by the Corrector with Off-Policy methods, such as V-trace, Retrace and so on. Then the corrected experiences are feed to the Learner for policy learning. We believe this is the first general reinforcement learning framework that incorporates multiple neural network compression techniques. Extensive experiments conducted in gym show that the AcceRL reduces the time cost of the actor by about 2.0 X to 4.13 X compared to the traditional methods. Furthermore, the AcceRL reduces the whole training time by about 29.8% to 40.3% compared to the traditional methods while keeps the same policy quality.
Unintended memorization of various information granularity has garnered academic attention in recent years, e.g. membership inference and property inference. How to inversely use this privacy leakage to facilitate real-world applications is a growing direction; the current efforts include dataset ownership inference and user auditing. Standing on the data lifecycle and ML model production, we propose an inference process named Data Provenance Inference, which is to infer the generation, collection or processing property of the ML training data, to assist ML developers in locating the training data gaps without maintaining strenuous metadata. We formularly define the data provenance and the data provenance inference task in ML training. Then we propose a novel inference strategy combining embedded-space multiple instance classification and shadow learning. Comprehensive evaluations cover language, visual and structured data in black-box and white-box settings, with diverse kinds of data provenance (i.e. business, county, movie, user). Our best inference accuracy achieves 98.96% in the white-box text model when "author" is the data provenance. The experimental results indicate that, in general, the inference performance positively correlated with the amount of reference data for inference, the depth and also the amount of the parameter of the accessed layer. Furthermore, we give a post-hoc statistical analysis of the data provenance definition to explain when our proposed method works well.
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.
Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}
The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.