Influenced mixed moving average fields are a versatile modeling class for spatio-temporal data. However, their predictive distribution is not generally known. Under this modeling assumption, we define a novel spatio-temporal embedding and a theory-guided machine learning approach that employs a generalized Bayesian algorithm to make ensemble forecasts. We employ Lipschitz predictors and determine fixed-time and any-time PAC Bayesian bounds in the batch learning setting. Performing causal forecast is a highlight of our methodology as its potential application to data with spatial and temporal short and long-range dependence. We then test the performance of our learning methodology by using linear predictors and data sets simulated from a spatio-temporal Ornstein-Uhlenbeck process.
Deep generative models are key-enabling technology to computer vision, text generation and large language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to incorporate flexible model architectures and relatively simple training scheme. Quantum generative models, empowered by entanglement and superposition, have brought new insight to learning classical and quantum data. Inspired by the classical counterpart, we propose the \emph{quantum denoising diffusion probabilistic model} (QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient layers of circuits to guarantee expressivity, while introduces multiple intermediate training tasks as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient training. We provide bounds on the learning error and demonstrate QuDDPM's capability in learning correlated quantum noise model, quantum many-body phases and topological structure of quantum data. The results provide a paradigm for versatile and efficient quantum generative learning.
This article presents factor copula approaches to model temporal dependency of non- Gaussian (continuous/discrete) longitudinal data. Factor copula models are canonical vine copulas which explain the underlying dependence structure of a multivariate data through latent variables, and therefore can be easily interpreted and implemented to unbalanced longitudinal data. We develop regression models for continuous, binary and ordinal longitudinal data including covariates, by using factor copula constructions with subject-specific latent variables. Considering homogeneous within-subject dependence, our proposed models allow for feasible parametric inference in moderate to high dimensional situations, using two-stage (IFM) estimation method. We assess the finite sample performance of the proposed models with extensive simulation studies. In the empirical analysis, the proposed models are applied for analysing different longitudinal responses of two real world data sets. Moreover, we compare the performances of these models with some widely used random effect models using standard model selection techniques and find substantial improvements. Our studies suggest that factor copula models can be good alternatives to random effect models and can provide better insights to temporal dependency of longitudinal data of arbitrary nature.
This work has been motivated by a longitudinal data set on HIV CD4 T+ cell counts from Livingstone district, Zambia. The corresponding histogram plots indicate lack of symmetry in the marginal distributions and the pairwise scatter plots show non-elliptical dependence patterns. The standard linear mixed model for longitudinal data fails to capture these features. Thus it seems appropriate to consider a more general framework for modeling such data. In this article, we consider generalized linear mixed models (GLMM) for the marginals (e.g. Gamma mixed model), and temporal dependency of the repeated measurements is modeled by the copula corresponding to some skew-elliptical distributions (like skew-normal/skew-t). Our proposed class of copula based mixed models simultaneously takes into account asymmetry, between-subject variability and non-standard temporal dependence, and hence can be considered extensions to the standard linear mixed model based on multivariate normality. We estimate the model parameters using the IFM (inference function of margins) method, and also describe how to obtain standard errors of the parameter estimates. We investigate the finite sample performance of our procedure with extensive simulation studies involving skewed and symmetric marginal distributions and several choices of the copula. We finally apply our models to the HIV data set and report the findings.
This paper develops a flexible and computationally efficient multivariate volatility model, which allows for dynamic conditional correlations and volatility spillover effects among financial assets. The new model has desirable properties such as identifiability and computational tractability for many assets. A sufficient condition of the strict stationarity is derived for the new process. Two quasi-maximum likelihood estimation methods are proposed for the new model with and without low-rank constraints on the coefficient matrices respectively, and the asymptotic properties for both estimators are established. Moreover, a Bayesian information criterion with selection consistency is developed for order selection, and the testing for volatility spillover effects is carefully discussed. The finite sample performance of the proposed methods is evaluated in simulation studies for small and moderate dimensions. The usefulness of the new model and its inference tools is illustrated by two empirical examples for 5 stock markets and 17 industry portfolios, respectively.
We propose a new numerical domain decomposition method for solving elliptic equations on compact Riemannian manifolds. One advantage of this method is its ability to bypass the need for global triangulations or grids on the manifolds. Additionally, it features a highly parallel iterative scheme. To verify its efficacy, we conduct numerical experiments on some $4$-dimensional manifolds without and with boundary.
The human cerebral cortex has many bumps and grooves called gyri and sulci. Even though there is a high inter-individual consistency for the main cortical folds, this is not the case when we examine the exact shapes and details of the folding patterns. Because of this complexity, characterizing the cortical folding variability and relating them to subjects' behavioral characteristics or pathologies is still an open scientific problem. Classical approaches include labeling a few specific patterns, either manually or semi-automatically, based on geometric distances, but the recent availability of MRI image datasets of tens of thousands of subjects makes modern deep-learning techniques particularly attractive. Here, we build a self-supervised deep-learning model to detect folding patterns in the cingulate region. We train a contrastive self-supervised model (SimCLR) on both Human Connectome Project (1101 subjects) and UKBioBank (21070 subjects) datasets with topological-based augmentations on the cortical skeletons, which are topological objects that capture the shape of the folds. We explore several backbone architectures (convolutional network, DenseNet, and PointNet) for the SimCLR. For evaluation and testing, we perform a linear classification task on a database manually labeled for the presence of the "double-parallel" folding pattern in the cingulate region, which is related to schizophrenia characteristics. The best model, giving a test AUC of 0.76, is a convolutional network with 6 layers, a 10-dimensional latent space, a linear projection head, and using the branch-clipping augmentation. This is the first time that a self-supervised deep learning model has been applied to cortical skeletons on such a large dataset and quantitatively evaluated. We can now envisage the next step: applying it to other brain regions to detect other biomarkers.
Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi-parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B-spline function. For those "semiparametric" proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with micro-virulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the Deviance Information Criteria and the Log Pseudo-Marginal Likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the "semi-parametric" baseline hazard specification, the B-splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behaviour of the risk.
Data generation remains a bottleneck in training surrogate models to predict molecular properties. We demonstrate that multitask Gaussian process regression overcomes this limitation by leveraging both expensive and cheap data sources. In particular, we consider training sets constructed from coupled-cluster (CC) and density function theory (DFT) data. We report that multitask surrogates can predict at CC level accuracy with a reduction to data generation cost by over an order of magnitude. Of note, our approach allows the training set to include DFT data generated by a heterogeneous mix of exchange-correlation functionals without imposing any artificial hierarchy on functional accuracy. More generally, the multitask framework can accommodate a wider range of training set structures -- including full disparity between the different levels of fidelity -- than existing kernel approaches based on $\Delta$-learning, though we show that the accuracy of the two approaches can be similar. Consequently, multitask regression can be a tool for reducing data generation costs even further by opportunistically exploiting existing data sources.
Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.
Time series and extreme value analyses are two statistical approaches usually applied to study hydrological data. Classical techniques, such as ARIMA models (in the case of mean flow predictions), and parametric generalised extreme value (GEV) fits and nonparametric extreme value methods (in the case of extreme value theory) have been usually employed in this context. In this paper, nonparametric functional data methods are used to perform mean monthly flow predictions and extreme value analysis, which are important for flood risk management. These are powerful tools that take advantage of both, the functional nature of the data under consideration and the flexibility of nonparametric methods, providing more reliable results. Therefore, they can be useful to prevent damage caused by floods and to reduce the likelihood and/or the impact of floods in a specific location. The nonparametric functional approaches are applied to flow samples of two rivers in the U.S. In this way, monthly mean flow is predicted and flow quantiles in the extreme value framework are estimated using the proposed methods. Results show that the nonparametric functional techniques work satisfactorily, generally outperforming the behaviour of classical parametric and nonparametric estimators in both settings.