亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, it has become popular to deploy sensors such as LiDARs on the roadside to monitor the passing traffic and assist autonomous vehicle perception. Unlike autonomous vehicle systems, roadside sensors are usually affiliated with different subsystems and lack synchronization both in time and space. Calibration is a key technology which allows the central server to fuse the data generated by different location infrastructures, which can deliver improve the sensing range and detection robustness. Unfortunately, existing calibration algorithms often assume that the LiDARs are significantly overlapped or that the temporal calibration is already achieved. Since these assumptions do not always hold in the real world, the calibration results from the existing algorithms are often unsatisfactory and always need human involvement, which brings high labor costs. In this paper, we propose TrajMatch -- the first system that can automatically calibrate for roadside LiDARs in both time and space. The main idea is to automatically calibrate the sensors based on the result of the detection/tracking task instead of extracting special features. More deeply, we propose a mechanism for evaluating calibration parameters that is consistent with our algorithm, and we demonstrate the effectiveness of this scheme experimentally, which can also be used to guide parameter iterations for multiple calibration. Finally, to evaluate the performance of TrajMatch , we collect two dataset, one simulated dataset LiDARnet-sim 1.0 and a real-world dataset. Experiment results show that TrajMatch can achieve a spatial calibration error of less than 10cm and a temporal calibration error of less than 1.5ms.

相關內容

Recent advancements in technology have led to a boost in social media usage which has ultimately led to large amounts of user-generated data which also includes hateful and offensive speech. The language used in social media is often a combination of English and the native language in the region. In India, Hindi is used predominantly and is often code-switched with English, giving rise to the Hinglish (Hindi+English) language. Various approaches have been made in the past to classify the code-mixed Hinglish hate speech using different machine learning and deep learning-based techniques. However, these techniques make use of recurrence on convolution mechanisms which are computationally expensive and have high memory requirements. Past techniques also make use of complex data processing making the existing techniques very complex and non-sustainable to change in data. Proposed work gives a much simpler approach which is not only at par with these complex networks but also exceeds performance with the use of subword tokenization algorithms like BPE and Unigram, along with multi-head attention-based techniques, giving an accuracy of 87.41% and an F1 score of 0.851 on standard datasets. Efficient use of BPE and Unigram algorithms help handle the nonconventional Hinglish vocabulary making the proposed technique simple, efficient and sustainable to use in the real world.

Images are increasingly being shared by software developers in diverse channels including question-and-answer forums like Stack Overflow. Although prior work has pointed out that these images are meaningful and provide complementary information compared to their associated text, how images are used to support questions is empirically unknown. To address this knowledge gap, in this paper we specifically conduct an empirical study to investigate (I) the characteristics of images, (II) the extent to which images are used in different question types, and (III) the role of images on receiving answers. Our results first show that user interface is the most common image content and undesired output is the most frequent purpose for sharing images. Moreover, these images essentially facilitate the understanding of 68% of sampled questions. Second, we find that discrepancy questions are more relatively frequent compared to those without images, but there are no significant differences observed in description length in all types of questions. Third, the quantitative results statistically validate that questions with images are more likely to receive accepted answers, but do not speed up the time to receive answers. Our work demonstrates the crucial role that images play by approaching the topic from a new angle and lays the foundation for future opportunities to use images to assist in tasks like generating questions and identifying question-relatedness.

Electronic health records (EHRs) store an extensive array of patient information, encompassing medical histories, diagnoses, treatments, and test outcomes. These records are crucial for enabling healthcare providers to make well-informed decisions regarding patient care. Summarizing clinical notes further assists healthcare professionals in pinpointing potential health risks and making better-informed decisions. This process contributes to reducing errors and enhancing patient outcomes by ensuring providers have access to the most pertinent and current patient data. Recent research has shown that incorporating prompts with large language models (LLMs) substantially boosts the efficacy of summarization tasks. However, we show that this approach also leads to increased output variance, resulting in notably divergent outputs even when prompts share similar meanings. To tackle this challenge, we introduce a model-agnostic Soft Prompt-Based Calibration (SPeC) pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization. Experimental findings on multiple clinical note tasks and LLMs indicate that our method not only bolsters performance but also effectively curbs variance for various LLMs, providing a more uniform and dependable solution for summarizing vital medical information.

Learning various motor skills for quadrupedal robots is a challenging problem that requires careful design of task-specific mathematical models or reward descriptions. In this work, we propose to learn a single capable policy using deep reinforcement learning by imitating a large number of reference motions, including walking, turning, pacing, jumping, sitting, and lying. On top of the existing motion imitation framework, we first carefully design the observation space, the action space, and the reward function to improve the scalability of the learning as well as the robustness of the final policy. In addition, we adopt a novel adaptive motion sampling (AMS) method, which maintains a balance between successful and unsuccessful behaviors. This technique allows the learning algorithm to focus on challenging motor skills and avoid catastrophic forgetting. We demonstrate that the learned policy can exhibit diverse behaviors in simulation by successfully tracking both the training dataset and out-of-distribution trajectories. We also validate the importance of the proposed learning formulation and the adaptive motion sampling scheme by conducting experiments.

Deep learning algorithms have recently shown to be a successful tool in estimating parameters of statistical models for which simulation is easy, but likelihood computation is challenging. But the success of these approaches depends on simulating parameters that sufficiently reproduce the observed data, and, at present, there is a lack of efficient methods to produce these simulations. We develop new black-box procedures to estimate parameters of statistical models based only on weak parameter structure assumptions. For well-structured likelihoods with frequent occurrences, such as in time series, this is achieved by pre-training a deep neural network on an extensive simulated database that covers a wide range of data sizes. For other types of complex dependencies, an iterative algorithm guides simulations to the correct parameter region in multiple rounds. These approaches can successfully estimate and quantify the uncertainty of parameters from non-Gaussian models with complex spatial and temporal dependencies. The success of our methods is a first step towards a fully flexible automatic black-box estimation framework.

Listening to long video/audio recordings from video conferencing and online courses for acquiring information is extremely inefficient. Even after ASR systems transcribe recordings into long-form spoken language documents, reading ASR transcripts only partly speeds up seeking information. It has been observed that a range of NLP applications, such as keyphrase extraction, topic segmentation, and summarization, significantly improve users' efficiency in grasping important information. The meeting scenario is among the most valuable scenarios for deploying these spoken language processing (SLP) capabilities. However, the lack of large-scale public meeting datasets annotated for these SLP tasks severely hinders their advancement. To prompt SLP advancement, we establish a large-scale general Meeting Understanding and Generation Benchmark (MUG) to benchmark the performance of a wide range of SLP tasks, including topic segmentation, topic-level and session-level extractive summarization and topic title generation, keyphrase extraction, and action item detection. To facilitate the MUG benchmark, we construct and release a large-scale meeting dataset for comprehensive long-form SLP development, the AliMeeting4MUG Corpus, which consists of 654 recorded Mandarin meeting sessions with diverse topic coverage, with manual annotations for SLP tasks on manual transcripts of meeting recordings. To the best of our knowledge, the AliMeeting4MUG Corpus is so far the largest meeting corpus in scale and facilitates most SLP tasks. In this paper, we provide a detailed introduction of this corpus, SLP tasks and evaluation methods, baseline systems and their performance.

Image matching is a classic and fundamental task in computer vision. In this paper, under the hypothesis that the areas outside the co-visible regions carry little information, we propose a matching key-points crop (MKPC) algorithm. The MKPC locates, proposes and crops the critical regions, which are the co-visible areas with great efficiency and accuracy. Furthermore, building upon MKPC, we propose a general two-stage pipeline for image matching, which is compatible to any image matching models or combinations. We experimented with plugging SuperPoint + SuperGlue into the two-stage pipeline, whose results show that our method enhances the performance for outdoor pose estimations. What's more, in a fair comparative condition, our method outperforms the SOTA on Image Matching Challenge 2022 Benchmark, which represents the hardest outdoor benchmark of image matching currently.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

Automatic License Plate Recognition (ALPR) has been a frequent topic of research due to many practical applications. However, many of the current solutions are still not robust in real-world situations, commonly depending on many constraints. This paper presents a robust and efficient ALPR system based on the state-of-the-art YOLO object detection. The Convolutional Neural Networks (CNNs) are trained and fine-tuned for each ALPR stage so that they are robust under different conditions (e.g., variations in camera, lighting, and background). Specially for character segmentation and recognition, we design a two-stage approach employing simple data augmentation tricks such as inverted License Plates (LPs) and flipped characters. The resulting ALPR approach achieved impressive results in two datasets. First, in the SSIG dataset, composed of 2,000 frames from 101 vehicle videos, our system achieved a recognition rate of 93.53% and 47 Frames Per Second (FPS), performing better than both Sighthound and OpenALPR commercial systems (89.80% and 93.03%, respectively) and considerably outperforming previous results (81.80%). Second, targeting a more realistic scenario, we introduce a larger public dataset, called UFPR-ALPR dataset, designed to ALPR. This dataset contains 150 videos and 4,500 frames captured when both camera and vehicles are moving and also contains different types of vehicles (cars, motorcycles, buses and trucks). In our proposed dataset, the trial versions of commercial systems achieved recognition rates below 70%. On the other hand, our system performed better, with recognition rate of 78.33% and 35 FPS.

北京阿比特科技有限公司