This work proposes a neural network to extensively exploit spatial information for multichannel joint speech separation, denoising and dereverberation, named SpatialNet. In the short-time Fourier transform (STFT) domain, the proposed network performs end-to-end speech enhancement. It is mainly composed of interleaved narrow-band and cross-band blocks to respectively exploit narrow-band and cross-band spatial information. The narrow-band blocks process frequencies independently, and use self-attention mechanism and temporal convolutional layers to respectively perform spatial-feature-based speaker clustering and temporal smoothing/filtering. The cross-band blocks process frames independently, and use full-band linear layer and frequency convolutional layers to respectively learn the correlation between all frequencies and adjacent frequencies. Experiments are conducted on various simulated and real datasets, and the results show that 1) the proposed network achieves the state-of-the-art performance on almost all tasks; 2) the proposed network suffers little from the spectral generalization problem; and 3) the proposed network is indeed performing speaker clustering (demonstrated by attention maps).
Cloud-based large language models (LLMs) such as ChatGPT have increasingly become integral to daily operations, serving as vital tools across various applications. While these models offer substantial benefits in terms of accessibility and functionality, they also introduce significant privacy concerns: the transmission and storage of user data in cloud infrastructures pose substantial risks of data breaches and unauthorized access to sensitive information; even if the transmission and storage of data is encrypted, the LLM service provider itself still knows the real contents of the data, preventing individuals or entities from confidently using such LLM services. To address these concerns, this paper proposes a simple yet effective mechanism EmojiCrypt to protect user privacy. It uses Emoji to encrypt the user inputs before sending them to LLM, effectively rendering them indecipherable to human or LLM's examination while retaining the original intent of the prompt, thus ensuring the model's performance remains unaffected. We conduct experiments on three tasks, personalized recommendation, sentiment analysis, and tabular data analysis. Experiment results reveal that EmojiCrypt can encrypt personal information within prompts in such a manner that not only prevents the discernment of sensitive data by humans or LLM itself, but also maintains or even improves the precision without further tuning, achieving comparable or even better task accuracy than directly prompting the LLM without prompt encryption. These results highlight the practicality of adopting encryption measures that safeguard user privacy without compromising the functional integrity and performance of LLMs. Code and dataset are available at //github.com/agiresearch/EmojiCrypt.
Manipulating deformable objects is a ubiquitous task in household environments, demanding adequate representation and accurate dynamics prediction due to the objects' infinite degrees of freedom. This work proposes DeformNet, which utilizes latent space modeling with a learned 3D representation model to tackle these challenges effectively. The proposed representation model combines a PointNet encoder and a conditional neural radiance field (NeRF), facilitating a thorough acquisition of object deformations and variations in lighting conditions. To model the complex dynamics, we employ a recurrent state-space model (RSSM) that accurately predicts the transformation of the latent representation over time. Extensive simulation experiments with diverse objectives demonstrate the generalization capabilities of DeformNet for various deformable object manipulation tasks, even in the presence of previously unseen goals. Finally, we deploy DeformNet on an actual UR5 robotic arm to demonstrate its capability in real-world scenarios.
This work explores the zero-shot adaptation capability of semantic skills, semantically interpretable experts' behavior patterns, in cross-domain settings, where a user input in interleaved multi-modal snippets can prompt a new long-horizon task for different domains. In these cross-domain settings, we present a semantic skill translator framework SemTra which utilizes a set of multi-modal models to extract skills from the snippets, and leverages the reasoning capabilities of a pretrained language model to adapt these extracted skills to the target domain. The framework employs a two-level hierarchy for adaptation: task adaptation and skill adaptation. During task adaptation, seq-to-seq translation by the language model transforms the extracted skills into a semantic skill sequence, which is tailored to fit the cross-domain contexts. Skill adaptation focuses on optimizing each semantic skill for the target domain context, through parametric instantiations that are facilitated by language prompting and contrastive learning-based context inferences. This hierarchical adaptation empowers the framework to not only infer a complex task specification in one-shot from the interleaved multi-modal snippets, but also adapt it to new domains with zero-shot learning abilities. We evaluate our framework with Meta-World, Franka Kitchen, RLBench, and CARLA environments. The results clarify the framework's superiority in performing long-horizon tasks and adapting to different domains, showing its broad applicability in practical use cases, such as cognitive robots interpreting abstract instructions and autonomous vehicles operating under varied configurations.
This research explores the integration of language embeddings for active learning in autonomous driving datasets, with a focus on novelty detection. Novelty arises from unexpected scenarios that autonomous vehicles struggle to navigate, necessitating higher-level reasoning abilities. Our proposed method employs language-based representations to identify novel scenes, emphasizing the dual purpose of safety takeover responses and active learning. The research presents a clustering experiment using Contrastive Language-Image Pretrained (CLIP) embeddings to organize datasets and detect novelties. We find that the proposed algorithm effectively isolates novel scenes from a collection of subsets derived from two real-world driving datasets, one vehicle-mounted and one infrastructure-mounted. From the generated clusters, we further present methods for generating textual explanations of elements which differentiate scenes classified as novel from other scenes in the data pool, presenting qualitative examples from the clustered results. Our results demonstrate the effectiveness of language-driven embeddings in identifying novel elements and generating explanations of data, and we further discuss potential applications in safe takeovers, data curation, and multi-task active learning.
Sponge attacks aim to increase the energy consumption and computation time of neural networks deployed on hardware accelerators. Existing sponge attacks can be performed during inference via sponge examples or during training via Sponge Poisoning. Sponge examples leverage perturbations added to the model's input to increase energy and latency, while Sponge Poisoning alters the objective function of a model to induce inference-time energy/latency effects. In this work, we propose a novel sponge attack called SpongeNet. SpongeNet is the first sponge attack that is performed directly on the parameters of a pre-trained model. Our experiments show that SpongeNet can successfully increase the energy consumption of vision models with fewer samples required than Sponge Poisoning. Our experiments indicate that poisoning defenses are ineffective if not adjusted specifically for the defense against Sponge Poisoning (i.e., they decrease batch normalization bias values). Our work shows that SpongeNet is more effective on StarGAN than the state-of-the-art. Additionally, SpongeNet is stealthier than the previous Sponge Poisoning attack as it does not require significant changes in the victim model's weights. Our experiments indicate that the SpongeNet attack can be performed even when an attacker has access to only 1% of the entire dataset and reach up to 11% energy increase.
Cloud-based large language models (LLMs) such as ChatGPT have increasingly become integral to daily operations, serving as vital tools across various applications. While these models offer substantial benefits in terms of accessibility and functionality, they also introduce significant privacy concerns: the transmission and storage of user data in cloud infrastructures pose substantial risks of data breaches and unauthorized access to sensitive information; even if the transmission and storage of data is encrypted, the LLM service provider itself still knows the real contents of the data, preventing individuals or entities from confidently using such LLM services. To address these concerns, this paper proposes a simple yet effective mechanism PromptCrypt to protect user privacy. It uses Emoji to encrypt the user inputs before sending them to LLM, effectively rendering them indecipherable to human or LLM's examination while retaining the original intent of the prompt, thus ensuring the model's performance remains unaffected. We conduct experiments on three tasks, personalized recommendation, sentiment analysis, and tabular data analysis. Experiment results reveal that PromptCrypt can encrypt personal information within prompts in such a manner that not only prevents the discernment of sensitive data by humans or LLM itself, but also maintains or even improves the precision without further tuning, achieving comparable or even better task accuracy than directly prompting the LLM without prompt encryption. These results highlight the practicality of adopting encryption measures that safeguard user privacy without compromising the functional integrity and performance of LLMs. Code and dataset are available at //github.com/agiresearch/PromptCrypt.
This work investigates adversarial training in the context of margin-based linear classifiers in the high-dimensional regime where the dimension $d$ and the number of data points $n$ diverge with a fixed ratio $\alpha = n / d$. We introduce a tractable mathematical model where the interplay between the data and adversarial attacker geometries can be studied, while capturing the core phenomenology observed in the adversarial robustness literature. Our main theoretical contribution is an exact asymptotic description of the sufficient statistics for the adversarial empirical risk minimiser, under generic convex and non-increasing losses. Our result allow us to precisely characterise which directions in the data are associated with a higher generalisation/robustness trade-off, as defined by a robustness and a usefulness metric. In particular, we unveil the existence of directions which can be defended without penalising accuracy. Finally, we show the advantage of defending non-robust features during training, identifying a uniform protection as an inherently effective defence mechanism.
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.