亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traffic Weaver is a Python package developed to generate a semi-synthetic signal (time series) with finer granularity, based on averaged time series, in a manner that, upon averaging, closely matches the original signal provided. The key components utilized to recreate the signal encompass oversampling with a given strategy, stretching to match the integral of the original time series, smoothing, repeating, applying trend, and adding noise. The primary motivation behind Traffic Weaver is to furnish semi-synthetic time-varying traffic in telecommunication networks, facilitating the development and validation of traffic prediction models, as well as aiding in the deployment of network optimization algorithms tailored for time-varying traffic.

相關內容

We develop a novel deep learning technique, termed Deep Orthogonal Decomposition (DOD), for dimensionality reduction and reduced order modeling of parameter dependent partial differential equations. The approach consists in the construction of a deep neural network model that approximates the solution manifold through a continuously adaptive local basis. In contrast to global methods, such as Principal Orthogonal Decomposition (POD), the adaptivity allows the DOD to overcome the Kolmogorov barrier, making the approach applicable to a wide spectrum of parametric problems. Furthermore, due to its hybrid linear-nonlinear nature, the DOD can accommodate both intrusive and nonintrusive techniques, providing highly interpretable latent representations and tighter control on error propagation. For this reason, the proposed approach stands out as a valuable alternative to other nonlinear techniques, such as deep autoencoders. The methodology is discussed both theoretically and practically, evaluating its performances on problems featuring nonlinear PDEs, singularities, and parametrized geometries.

Physics-informed neural networks (PINN) is a extremely powerful paradigm used to solve equations encountered in scientific computing applications. An important part of the procedure is the minimization of the equation residual which includes, when the equation is time-dependent, a time sampling. It was argued in the literature that the sampling need not be uniform but should overweight initial time instants, but no rigorous explanation was provided for these choice. In this paper we take some prototypical examples and, under standard hypothesis concerning the neural network convergence, we show that the optimal time sampling follows a truncated exponential distribution. In particular we explain when the time sampling is best to be uniform and when it should not be. The findings are illustrated with numerical examples on linear equation, Burgers' equation and the Lorenz system.

Count time series data are frequently analyzed by modeling their conditional means and the conditional variance is often considered to be a deterministic function of the corresponding conditional mean and is not typically modeled independently. We propose a semiparametric mean and variance joint model, called random rounded count-valued generalized autoregressive conditional heteroskedastic (RRC-GARCH) model, to address this limitation. The RRC-GARCH model and its variations allow for the joint modeling of both the conditional mean and variance and offer a flexible framework for capturing various mean-variance structures (MVSs). One main feature of this model is its ability to accommodate negative values for regression coefficients and autocorrelation functions. The autocorrelation structure of the RRC-GARCH model using the proposed Laplace link functions with nonnegative regression coefficients is the same as that of an autoregressive moving-average (ARMA) process. For the new model, the stationarity and ergodicity are established and the consistency and asymptotic normality of the conditional least squares estimator are proved. Model selection criteria are proposed to evaluate the RRC-GARCH models. The performance of the RRC-GARCH model is assessed through analyses of both simulated and real data sets. The results indicate that the model can effectively capture the MVS of count time series data and generate accurate forecast means and variances.

Solving Fluid-Structure Interaction (FSI) problems using traditional methods is a big challenge in the field of numerical simulation. As a powerful multi-physical field coupled library, preCICE has a bright application prospect for solving FSI, which supports many open/closed source software and commercial CFD solvers to solve FSI problems in the form of a black box. However, this library currently only supports mesh-based coupling schemes. This paper proposes a critical grid (mesh) as an intermediate medium for the particle method to connect a bidirectional coupling tool named preCICE. The particle and critical mesh are used to interpolate the displacement and force so that the pure Lagrangian Smoothed Particle Hydrodynamic (SPH) method can also solve the FSI problem. This method is called the particle mesh coupling (PMC) method, which theoretically solves the mesh mismatch problem based on the particle method to connect preCICE. In addition, we conduct experiments to verify the performance of the PMC method, in which the fluid and the structure is discretized by SPH and the Finite Element Method (FEM), respectively. The results show that the PMC method given in this paper is effective for solving FSI problems. Finally, our source code for the SPH fluid adapter is open-source and available on GitHub for further developing preCICE compatibility with more meshless methods.

High-dimensional, higher-order tensor data are gaining prominence in a variety of fields, including but not limited to computer vision and network analysis. Tensor factor models, induced from noisy versions of tensor decompositions or factorizations, are natural potent instruments to study a collection of tensor-variate objects that may be dependent or independent. However, it is still in the early stage of developing statistical inferential theories for the estimation of various low-rank structures, which are customary to play the role of signals of tensor factor models. In this paper, we attempt to ``decode" the estimation of a higher-order tensor factor model by leveraging tensor matricization. Specifically, we recast it into mode-wise traditional high-dimensional vector/fiber factor models, enabling the deployment of conventional principal components analysis (PCA) for estimation. Demonstrated by the Tucker tensor factor model (TuTFaM), which is induced from the noisy version of the widely-used Tucker decomposition, we summarize that estimations on signal components are essentially mode-wise PCA techniques, and the involvement of projection and iteration will enhance the signal-to-noise ratio to various extent. We establish the inferential theory of the proposed estimators, conduct rich simulation experiments, and illustrate how the proposed estimations can work in tensor reconstruction, and clustering for independent video and dependent economic datasets, respectively.

The main challenge of large-scale numerical simulation of radiation transport is the high memory and computation time requirements of discretization methods for kinetic equations. In this work, we derive and investigate a neural network-based approximation to the entropy closure method to accurately compute the solution of the multi-dimensional moment system with a low memory footprint and competitive computational time. We extend methods developed for the standard entropy-based closure to the context of regularized entropy-based closures. The main idea is to interpret structure-preserving neural network approximations of the regularized entropy closure as a two-stage approximation to the original entropy closure. We conduct a numerical analysis of this approximation and investigate optimal parameter choices. Our numerical experiments demonstrate that the method has a much lower memory footprint than traditional methods with competitive computation times and simulation accuracy. The code and all trained networks are provided on GitHub //github.com/ScSteffen/neuralEntropyClosures and //github.com/CSMMLab/KiT-RT.

The e-BH procedure is an e-value-based multiple testing procedure that provably controls the false discovery rate (FDR) under any dependence structure between the e-values. Despite this appealing theoretical FDR control guarantee, the e-BH procedure often suffers from low power in practice. In this paper, we propose a general framework that boosts the power of e-BH without sacrificing its FDR control under arbitrary dependence. This is achieved by the technique of conditional calibration, where we take as input the e-values and calibrate them to be a set of "boosted e-values" that are guaranteed to be no less -- and are often more -- powerful than the original ones. Our general framework is explicitly instantiated in three classes of multiple testing problems: (1) testing under parametric models, (2) conditional independence testing under the model-X setting, and (3) model-free conformalized selection. Extensive numerical experiments show that our proposed method significantly improves the power of e-BH while continuing to control the FDR. We also demonstrate the effectiveness of our method through an application to an observational study dataset for identifying individuals whose counterfactuals satisfy certain properties.

The influence of natural image transformations on receptive field responses is crucial for modelling visual operations in computer vision and biological vision. In this regard, covariance properties with respect to geometric image transformations in the earliest layers of the visual hierarchy are essential for expressing robust image operations, and for formulating invariant visual operations at higher levels. This paper defines and proves a set of joint covariance properties under compositions of spatial scaling transformations, spatial affine transformations, Galilean transformations and temporal scaling transformations, which make it possible to characterize how different types of image transformations interact with each other and the associated spatio-temporal receptive field responses. In this regard, we also extend the notion of scale-normalized derivatives to affine-normalized derivatives, to be able to obtain true affine-covariant properties of spatial derivatives, that are computed based on spatial smoothing with affine Gaussian kernels. The derived relations show how the parameters of the receptive fields need to be transformed, in order to match the output from spatio-temporal receptive fields under composed spatio-temporal image transformations. As a side effect, the presented proof for the joint covariance property over the integrated combination of the different geometric image transformations also provides specific proofs for the individual transformation properties, which have not previously been fully reported in the literature. The paper also presents an in-depth theoretical analysis of geometric interpretations of the derived covariance properties, as well as outlines a number of biological interpretations of these results.

Satellite imaging generally presents a trade-off between the frequency of acquisitions and the spatial resolution of the images. Super-resolution is often advanced as a way to get the best of both worlds. In this work, we investigate multi-image super-resolution of satellite image time series, i.e. how multiple images of the same area acquired at different dates can help reconstruct a higher resolution observation. In particular, we extend state-of-the-art deep single and multi-image super-resolution algorithms, such as SRDiff and HighRes-net, to deal with irregularly sampled Sentinel-2 time series. We introduce BreizhSR, a new dataset for 4x super-resolution of Sentinel-2 time series using very high-resolution SPOT-6 imagery of Brittany, a French region. We show that using multiple images significantly improves super-resolution performance, and that a well-designed temporal positional encoding allows us to perform super-resolution for different times of the series. In addition, we observe a trade-off between spectral fidelity and perceptual quality of the reconstructed HR images, questioning future directions for super-resolution of Earth Observation data.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

北京阿比特科技有限公司