亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a generalized class of multimodal fusion operators for the task of visual question answering (VQA). We identify generalizations of existing multimodal fusion operators based on the Hadamard product, and show that specific non-trivial instantiations of this generalized fusion operator exhibit superior performance in terms of OpenEnded accuracy on the VQA task. In particular, we introduce Nonlinearity Ensembling, Feature Gating, and post-fusion neural network layers as fusion operator components, culminating in an absolute percentage point improvement of $1.1\%$ on the VQA 2.0 test-dev set over baseline fusion operators, which use the same features as input. We use our findings as evidence that our generalized class of fusion operators could lead to the discovery of even superior task-specific operators when used as a search space in an architecture search over fusion operators.

相關內容

視覺問答(Visual Question Answering,VQA),是一種涉及計算機視覺和自然語言處理的學習任務。這一任務的定義如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻譯為中文:一個VQA系統以一張圖片和一個關于這張圖片形式自由、開放式的自然語言問題作為輸入,以生成一條自然語言答案作為輸出。簡單來說,VQA就是給定的圖片進行問答。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

In this paper, we propose a novel deep multi-level attention model to address inverse visual question answering. The proposed model generates regional visual and semantic features at the object level and then enhances them with the answer cue by using attention mechanisms. Two levels of multiple attentions are employed in the model, including the dual attention at the partial question encoding step and the dynamic attention at the next question word generation step. We evaluate the proposed model on the VQA V1 dataset. It demonstrates state-of-the-art performance in terms of multiple commonly used metrics.

A machine learning model was developed to automatically generate questions from Wikipedia passages using transformers, an attention-based model eschewing the paradigm of existing recurrent neural networks (RNNs). The model was trained on the inverted Stanford Question Answering Dataset (SQuAD), which is a reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles. After training, the question generation model is able to generate simple questions relevant to unseen passages and answers containing an average of 8 words per question. The word error rate (WER) was used as a metric to compare the similarity between SQuAD questions and the model-generated questions. Although the high average WER suggests that the questions generated differ from the original SQuAD questions, the questions generated are mostly grammatically correct and plausible in their own right.

Paragraph-style image captions describe diverse aspects of an image as opposed to the more common single-sentence captions that only provide an abstract description of the image. These paragraph captions can hence contain substantial information of the image for tasks such as visual question answering. Moreover, this textual information is complementary with visual information present in the image because it can discuss both more abstract concepts and more explicit, intermediate symbolic information about objects, events, and scenes that can directly be matched with the textual question and copied into the textual answer (i.e., via easier modality match). Hence, we propose a combined Visual and Textual Question Answering (VTQA) model which takes as input a paragraph caption as well as the corresponding image, and answers the given question based on both inputs. In our model, the inputs are fused to extract related information by cross-attention (early fusion), then fused again in the form of consensus (late fusion), and finally expected answers are given an extra score to enhance the chance of selection (later fusion). Empirical results show that paragraph captions, even when automatically generated (via an RL-based encoder-decoder model), help correctly answer more visual questions. Overall, our joint model, when trained on the Visual Genome dataset, significantly improves the VQA performance over a strong baseline model.

In order to answer semantically-complicated questions about an image, a Visual Question Answering (VQA) model needs to fully understand the visual scene in the image, especially the interactive dynamics between different objects. We propose a Relation-aware Graph Attention Network (ReGAT), which encodes each image into a graph and models multi-type inter-object relations via a graph attention mechanism, to learn question-adaptive relation representations. Two types of visual object relations are explored: (i) Explicit Relations that represent geometric positions and semantic interactions between objects; and (ii) Implicit Relations that capture the hidden dynamics between image regions. Experiments demonstrate that ReGAT outperforms prior state-of-the-art approaches on both VQA 2.0 and VQA-CP v2 datasets. We further show that ReGAT is compatible to existing VQA architectures, and can be used as a generic relation encoder to boost the model performance for VQA.

Existing attention mechanisms either attend to local image grid or object level features for Visual Question Answering (VQA). Motivated by the observation that questions can relate to both object instances and their parts, we propose a novel attention mechanism that jointly considers reciprocal relationships between the two levels of visual details. The bottom-up attention thus generated is further coalesced with the top-down information to only focus on the scene elements that are most relevant to a given question. Our design hierarchically fuses multi-modal information i.e., language, object- and gird-level features, through an efficient tensor decomposition scheme. The proposed model improves the state-of-the-art single model performances from 67.9% to 68.2% on VQAv1 and from 65.7% to 67.4% on VQAv2, demonstrating a significant boost.

In this paper, we exploit a memory-augmented neural network to predict accurate answers to visual questions, even when those answers occur rarely in the training set. The memory network incorporates both internal and external memory blocks and selectively pays attention to each training exemplar. We show that memory-augmented neural networks are able to maintain a relatively long-term memory of scarce training exemplars, which is important for visual question answering due to the heavy-tailed distribution of answers in a general VQA setting. Experimental results on two large-scale benchmark datasets show the favorable performance of the proposed algorithm with a comparison to state of the art.

We propose the inverse problem of Visual question answering (iVQA), and explore its suitability as a benchmark for visuo-linguistic understanding. The iVQA task is to generate a question that corresponds to a given image and answer pair. Since the answers are less informative than the questions, and the questions have less learnable bias, an iVQA model needs to better understand the image to be successful than a VQA model. We pose question generation as a multi-modal dynamic inference process and propose an iVQA model that can gradually adjust its focus of attention guided by both a partially generated question and the answer. For evaluation, apart from existing linguistic metrics, we propose a new ranking metric. This metric compares the ground truth question's rank among a list of distractors, which allows the drawbacks of different algorithms and sources of error to be studied. Experimental results show that our model can generate diverse, grammatically correct and content correlated questions that match the given answer.

We propose an architecture for VQA which utilizes recurrent layers to generate visual and textual attention. The memory characteristic of the proposed recurrent attention units offers a rich joint embedding of visual and textual features and enables the model to reason relations between several parts of the image and question. Our single model outperforms the first place winner on the VQA 1.0 dataset, performs within margin to the current state-of-the-art ensemble model. We also experiment with replacing attention mechanisms in other state-of-the-art models with our implementation and show increased accuracy. In both cases, our recurrent attention mechanism improves performance in tasks requiring sequential or relational reasoning on the VQA dataset.

Inferring and Executing Programs for Visual Reasoning proposes a model for visual reasoning that consists of a program generator and an execution engine to avoid end-to-end models. To show that the model actually learns which objects to focus on to answer the questions, the authors give a visualization of the norm of the gradient of the sum of the predicted answer scores with respect to the final feature map. However, the authors do not evaluate the efficiency of focus map. This paper purposed a method for evaluating it. We generate several kinds of questions to test different keywords. We infer focus maps from the model by asking these questions and evaluate them by comparing with the segmentation graph. Furthermore, this method can be applied to any model if focus maps can be inferred from it. By evaluating focus map of different models on the CLEVR dataset, we will show that CLEVR-iep model has learned where to focus more than end-to-end models.

北京阿比特科技有限公司