In optimal covariance cleaning theory, minimizing the Frobenius norm between the true population covariance matrix and a rotational invariant estimator is a key step. This estimator can be obtained asymptotically for large covariance matrices, without knowledge of the true covariance matrix. In this study, we demonstrate that this minimization problem is equivalent to minimizing the loss of information between the true population covariance and the rotational invariant estimator for normal multivariate variables. However, for Student's t distributions, the minimal Frobenius norm does not necessarily minimize the information loss in finite-sized matrices. Nevertheless, such deviations vanish in the asymptotic regime of large matrices, which might extend the applicability of random matrix theory results to Student's t distributions. These distributions are characterized by heavy tails and are frequently encountered in real-world applications such as finance, turbulence, or nuclear physics. Therefore, our work establishes a connection between statistical random matrix theory and estimation theory in physics, which is predominantly based on information theory.
In conventional randomized controlled trials, adjustment for baseline values of covariates known to be at least moderately associated with the outcome increases the power of the trial. Recent work has shown particular benefit for more flexible frequentist designs, such as information adaptive and adaptive multi-arm designs. However, covariate adjustment has not been characterized within the more flexible Bayesian adaptive designs, despite their growing popularity. We focus on a subclass of these which allow for early stopping at an interim analysis given evidence of treatment superiority. We consider both collapsible and non-collapsible estimands, and show how to obtain posterior samples of marginal estimands from adjusted analyses. We describe several estimands for three common outcome types. We perform a simulation study to assess the impact of covariate adjustment using a variety of adjustment models in several different scenarios. This is followed by a real world application of the compared approaches to a COVID-19 trial with a binary endpoint. For all scenarios, it is shown that covariate adjustment increases power and the probability of stopping the trials early, and decreases the expected sample sizes as compared to unadjusted analyses.
Prevalent deterministic deep-learning models suffer from significant over-confidence under distribution shifts. Probabilistic approaches can reduce this problem but struggle with computational efficiency. In this paper, we propose Density-Softmax, a fast and lightweight deterministic method to improve calibrated uncertainty estimation via a combination of density function with the softmax layer. By using the latent representation's likelihood value, our approach produces more uncertain predictions when test samples are distant from the training samples. Theoretically, we show that Density-Softmax can produce high-quality uncertainty estimation with neural networks, as it is the solution of minimax uncertainty risk and is distance-aware, thus reducing the over-confidence of the standard softmax. Empirically, our method enjoys similar computational efficiency as a single forward pass deterministic with standard softmax on the shifted toy, vision, and language datasets across modern deep-learning architectures. Notably, Density-Softmax uses 4 times fewer parameters than Deep Ensembles and 6 times lower latency than Rank-1 Bayesian Neural Network, while obtaining competitive predictive performance and lower calibration errors under distribution shifts.
We consider the problem of testing the fit of a discrete sample of items from many categories to the uniform distribution over the categories. As a class of alternative hypotheses, we consider the removal of an $\ell_p$ ball of radius $\epsilon$ around the uniform rate sequence for $p \leq 2$. We deliver a sharp characterization of the asymptotic minimax risk when $\epsilon \to 0$ as the number of samples and number of dimensions go to infinity, for testing based on the occurrences' histogram (number of absent categories, singletons, collisions, ...). For example, for $p=1$ and in the limit of a small expected number of samples $n$ compared to the number of categories $N$ (aka "sub-linear" regime), the minimax risk $R^*_\epsilon$ asymptotes to $2 \bar{\Phi}\left(n \epsilon^2/\sqrt{8N}\right) $, with $\bar{\Phi}(x)$ the normal survival function. Empirical studies over a range of problem parameters show that this estimate is accurate in finite samples, and that our test is significantly better than the chisquared test or a test that only uses collisions. Our analysis is based on the asymptotic normality of histogram ordinates, the equivalence between the minimax setting to a Bayesian one, and the reduction of a multi-dimensional optimization problem to a one-dimensional problem.
In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.
Computational efficiency is a major bottleneck in using classic graph-based approaches for semi-supervised learning on datasets with a large number of unlabeled examples. Known techniques to improve efficiency typically involve an approximation of the graph regularization objective, but suffer two major drawbacks - first the graph is assumed to be known or constructed with heuristic hyperparameter values, second they do not provide a principled approximation guarantee for learning over the full unlabeled dataset. Building on recent work on learning graphs for semi-supervised learning from multiple datasets for problems from the same domain, and leveraging techniques for fast approximations for solving linear systems in the graph Laplacian matrix, we propose algorithms that overcome both the above limitations. We show a formal separation in the learning-theoretic complexity of sparse and dense graph families. We further show how to approximately learn the best graphs from the sparse families efficiently using the conjugate gradient method. Our approach can also be used to learn the graph efficiently online with sub-linear regret, under mild smoothness assumptions. Our online learning results are stated generally, and may be useful for approximate and efficient parameter tuning in other problems. We implement our approach and demonstrate significant ($\sim$10-100x) speedups over prior work on semi-supervised learning with learned graphs on benchmark datasets.
We present a distribution optimization framework that significantly improves confidence bounds for various risk measures compared to previous methods. Our framework encompasses popular risk measures such as the entropic risk measure, conditional value at risk (CVaR), spectral risk measure, distortion risk measure, equivalent certainty, and rank-dependent expected utility, which are well established in risk-sensitive decision-making literature. To achieve this, we introduce two estimation schemes based on concentration bounds derived from the empirical distribution, specifically using either the Wasserstein distance or the supremum distance. Unlike traditional approaches that add or subtract a confidence radius from the empirical risk measures, our proposed schemes evaluate a specific transformation of the empirical distribution based on the distance. Consequently, our confidence bounds consistently yield tighter results compared to previous methods. We further verify the efficacy of the proposed framework by providing tighter problem-dependent regret bound for the CVaR bandit.
Repeated measurements are common in many fields, where random variables are observed repeatedly across different subjects. Such data have an underlying hierarchical structure, and it is of interest to learn covariance/correlation at different levels. Most existing methods for sparse covariance/correlation matrix estimation assume independent samples. Ignoring the underlying hierarchical structure and correlation within the subject leads to erroneous scientific conclusions. In this paper, we study the problem of sparse and positive-definite estimation of between-subject and within-subject covariance/correlation matrices for repeated measurements. Our estimators are solutions to convex optimization problems that can be solved efficiently. We establish estimation error rates for the proposed estimators and demonstrate their favorable performance through theoretical analysis and comprehensive simulation studies. We further apply our methods to construct between-subject and within-subject covariance graphs of clinical variables from hemodialysis patients.
Unsupervised domain adaptation is critical to many real-world applications where label information is unavailable in the target domain. In general, without further assumptions, the joint distribution of the features and the label is not identifiable in the target domain. To address this issue, we rely on the property of minimal changes of causal mechanisms across domains to minimize unnecessary influences of distribution shifts. To encode this property, we first formulate the data-generating process using a latent variable model with two partitioned latent subspaces: invariant components whose distributions stay the same across domains and sparse changing components that vary across domains. We further constrain the domain shift to have a restrictive influence on the changing components. Under mild conditions, we show that the latent variables are partially identifiable, from which it follows that the joint distribution of data and labels in the target domain is also identifiable. Given the theoretical insights, we propose a practical domain adaptation framework called iMSDA. Extensive experimental results reveal that iMSDA outperforms state-of-the-art domain adaptation algorithms on benchmark datasets, demonstrating the effectiveness of our framework.
Supervised learning problems with side information in the form of a network arise frequently in applications in genomics, proteomics and neuroscience. For example, in genetic applications, the network side information can accurately capture background biological information on the intricate relations among the relevant genes. In this paper, we initiate a study of Bayes optimal learning in high-dimensional linear regression with network side information. To this end, we first introduce a simple generative model (called the Reg-Graph model) which posits a joint distribution for the supervised data and the observed network through a common set of latent parameters. Next, we introduce an iterative algorithm based on Approximate Message Passing (AMP) which is provably Bayes optimal under very general conditions. In addition, we characterize the limiting mutual information between the latent signal and the data observed, and thus precisely quantify the statistical impact of the network side information. Finally, supporting numerical experiments suggest that the introduced algorithm has excellent performance in finite samples.
Matrix valued data has become increasingly prevalent in many applications. Most of the existing clustering methods for this type of data are tailored to the mean model and do not account for the dependence structure of the features, which can be very informative, especially in high-dimensional settings. To extract the information from the dependence structure for clustering, we propose a new latent variable model for the features arranged in matrix form, with some unknown membership matrices representing the clusters for the rows and columns. Under this model, we further propose a class of hierarchical clustering algorithms using the difference of a weighted covariance matrix as the dissimilarity measure. Theoretically, we show that under mild conditions, our algorithm attains clustering consistency in the high-dimensional setting. While this consistency result holds for our algorithm with a broad class of weighted covariance matrices, the conditions for this result depend on the choice of the weight. To investigate how the weight affects the theoretical performance of our algorithm, we establish the minimax lower bound for clustering under our latent variable model. Given these results, we identify the optimal weight in the sense that using this weight guarantees our algorithm to be minimax rate-optimal in terms of the magnitude of some cluster separation metric. The practical implementation of our algorithm with the optimal weight is also discussed. Finally, we conduct simulation studies to evaluate the finite sample performance of our algorithm and apply the method to a genomic dataset.