Generative models for synthesizing audio textures explicitly encode controllability by conditioning the model with labelled data. While datasets for audio textures can be easily recorded in-the-wild, semantically labeling them is expensive, time-consuming, and prone to errors due to human annotator subjectivity. Thus, to control generation, there is a need to automatically infer user-defined perceptual factors of variation in the latent space of a generative model while modelling unlabeled textures. In this paper, we propose an example-based framework to determine vectors to guide texture generation based on user-defined semantic attributes. By synthesizing a few synthetic examples to indicate the presence or absence of a semantic attribute, we can infer the guidance vectors in the latent space of a generative model to control that attribute during generation. Our results show that our method is capable of finding perceptually relevant and deterministic guidance vectors for controllable generation for both discrete as well as continuous textures. Furthermore, we demonstrate the application of this method to other tasks such as selective semantic attribute transfer.
We present a new explicit local space-time adaptive framework to decrease the time required for monodomain simulations for cardiac electrophysiology. Based on the localized structure of the steep activation wavefront in solutions to monodomain problems, the proposed framework adopts small time steps and a tree-based adaptive mesh refinement scheme only in the regions necessary to resolve these localized structures. The time step and mesh adaptation selection process is fully controlled by a combination of local error indicators. The main contributions of this work consist in the introduction of a primal symmetric interior penalty formulation of the monodomain model and an efficient algorithmic strategy to manage local time stepping for its temporal discretization. In a first serial implementation of this framework, we report decreases in wall-clock time between 2 and 20 times with respect to an optimized implementation of a commonly used numerical scheme, showing that this framework is a promising candidate to accelerate monodomain simulations of cardiac electrophysiology.
The large-scale pretrained model CLIP, trained on 400 million image-text pairs, offers a promising paradigm for tackling vision tasks, albeit at the image level. Later works, such as DenseCLIP and LSeg, extend this paradigm to dense prediction, including semantic segmentation, and have achieved excellent results. However, the above methods either rely on CLIP-pretrained visual backbones or use none-pretrained but heavy backbones such as Swin, while falling ineffective when applied to lightweight backbones. The reason for this is that the lightweitht networks, feature extraction ability of which are relatively limited, meet difficulty embedding the image feature aligned with text embeddings perfectly. In this work, we present a new feature fusion module which tackles this problem and enables language-guided paradigm to be applied to lightweight networks. Specifically, the module is a parallel design of CNN and transformer with a two-way bridge in between, where CNN extracts spatial information and visual context of the feature map from the image encoder, and the transformer propagates text embeddings from the text encoder forward. The core of the module is the bidirectional fusion of visual and text feature across the bridge which prompts their proximity and alignment in embedding space. The module is model-agnostic, which can not only make language-guided lightweight semantic segmentation practical, but also fully exploit the pretrained knowledge of language priors and achieve better performance than previous SOTA work, such as DenseCLIP, whatever the vision backbone is. Extensive experiments have been conducted to demonstrate the superiority of our method.
Medical image segmentation methods are generally designed as fully-supervised to guarantee model performance, which require a significant amount of expert annotated samples that are high-cost and laborious. Semi-supervised image segmentation can alleviate the problem by utilizing a large number of unlabeled images along with limited labeled images. However, learning a robust representation from numerous unlabeled images remains challenging due to potential noise in pseudo labels and insufficient class separability in feature space, which undermines the performance of current semi-supervised segmentation approaches. To address the issues above, we propose a novel semi-supervised segmentation method named as Rectified Contrastive Pseudo Supervision (RCPS), which combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation. Particularly, we design a novel rectification strategy for the pseudo supervision method based on uncertainty estimation and consistency regularization to reduce the noise influence in pseudo labels. Furthermore, we introduce a bidirectional voxel contrastive loss to the network to ensure intra-class consistency and inter-class contrast in feature space, which increases class separability in the segmentation. The proposed RCPS segmentation method has been validated on two public datasets and an in-house clinical dataset. Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation. The source code is available at //github.com/hsiangyuzhao/RCPS.
We propose DiffSpEx, a generative target speaker extraction method based on score-based generative modelling through stochastic differential equations. DiffSpEx deploys a continuous-time stochastic diffusion process in the complex short-time Fourier transform domain, starting from the target speaker source and converging to a Gaussian distribution centred on the mixture of sources. For the reverse-time process, a parametrised score function is conditioned on a target speaker embedding to extract the target speaker from the mixture of sources. We utilise ECAPA-TDNN target speaker embeddings and condition the score function alternately on the SDE time embedding and the target speaker embedding. The potential of DiffSpEx is demonstrated with the WSJ0-2mix dataset, achieving an SI-SDR of 12.9 dB and a NISQA score of 3.56. Moreover, we show that fine-tuning a pre-trained DiffSpEx model to a specific speaker further improves performance, enabling personalisation in target speaker extraction.
We propose a novel approach for time-scale modification of audio signals. Unlike traditional methods that rely on the framing technique or the short-time Fourier transform to preserve the frequency during temporal stretching, our neural network model encodes the raw audio into a high-level latent representation, dubbed Neuralgram, where each vector represents 1024 audio sample points. Due to a sufficient compression ratio, we are able to apply arbitrary spatial interpolation of the Neuralgram to perform temporal stretching. Finally, a learned neural decoder synthesizes the time-scaled audio samples based on the stretched Neuralgram representation. Both the encoder and decoder are trained with latent regression losses and adversarial losses in order to obtain high-fidelity audio samples. Despite its simplicity, our method has comparable performance compared to the existing baselines and opens a new possibility in research into modern time-scale modification. Audio samples can be found at //tsmnet-mmasia23.github.io
Most deep learning-based acoustic scene classification (ASC) approaches identify scenes based on acoustic features converted from audio clips containing mixed information entangled by polyphonic audio events (AEs). However, these approaches have difficulties in explaining what cues they use to identify scenes. This paper conducts the first study on disclosing the relationship between real-life acoustic scenes and semantic embeddings from the most relevant AEs. Specifically, we propose an event-relational graph representation learning (ERGL) framework for ASC to classify scenes, and simultaneously answer clearly and straightly which cues are used in classifying. In the event-relational graph, embeddings of each event are treated as nodes, while relationship cues derived from each pair of nodes are described by multi-dimensional edge features. Experiments on a real-life ASC dataset show that the proposed ERGL achieves competitive performance on ASC by learning embeddings of only a limited number of AEs. The results show the feasibility of recognizing diverse acoustic scenes based on the audio event-relational graph. Visualizations of graph representations learned by ERGL are available here (//github.com/Yuanbo2020/ERGL).
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.