Disruptive changes in vehicles and transportation have been triggered by automated, connected, electrified and shared mobility. Autonomous vehicles, like Internet data packets, are transported from one address to another through the road network. The Internet has become a general network transmission paradigm, and the Energy Internet is a successful application of this paradigm to the field of energy. By introducing the Internet paradigm to the field of transportation, this paper is the first to propose the Transportation Internet. Based on the concept of the Transportation Internet, fundamental models, such as the switching, routing, and hierarchical models, are established to form basic theories; new architectures, such as transportation routers and software defined transportation, are proposed to make transportation interconnected and open; system verifications, such as prototype and simulation, are also carried out to prove feasibility and advancement. The Transportation Internet, which is of far-reaching significance in science and industry, has brought systematic breakthroughs in theory, architecture, and technology, explored innovative research directions, and provided an Internet-like solution for the new generation of transportation.
Models are used in both Software Engineering (SE) and Artificial Intelligence (AI). SE models may specify the architecture at different levels of abstraction and for addressing different concerns at various stages of the software development life-cycle, from early conceptualization and design, to verification, implementation, testing and evolution. However, AI models may provide smart capabilities, such as prediction and decision-making support. For instance, in Machine Learning (ML), which is currently the most popular sub-discipline of AI, mathematical models may learn useful patterns in the observed data and can become capable of making predictions. The goal of this work is to create synergy by bringing models in the said communities together and proposing a holistic approach to model-driven software development for intelligent systems that require ML. We illustrate how software models can become capable of creating and dealing with ML models in a seamless manner. The main focus is on the domain of the Internet of Things (IoT), where both ML and model-driven SE play a key role. In the context of the need to take a Cyber-Physical System-of-Systems perspective of the targeted architecture, an integrated design environment for both SE and ML sub-systems would best support the optimization and overall efficiency of the implementation of the resulting system. In particular, we implement the proposed approach, called ML-Quadrat, based on ThingML, and validate it using a case study from the IoT domain, as well as through an empirical user evaluation. It transpires that the proposed approach is not only feasible, but may also contribute to the performance leap of software development for smart Cyber-Physical Systems (CPS) which are connected to the IoT, as well as an enhanced user experience of the practitioners who use the proposed modeling solution.
Unmanned Aerial Vehicles (UAVs) are now becoming increasingly accessible to amateur and com-mercial users alike. Several types of airspace structures are proposed in recent research, which include several structured free flight concepts. In this paper, for simplic-ity, distributed coordinating the motions of multicopters in structured airspace concepts is focused. This is formulated as a free flight problem, which includes convergence to destination lines and inter-agent collision avoidance. The destination line of each multicopter is known a priori. Further, Lyapunov-like functions are designed elaborately, and formal analysis and proofs of the proposed distributed control are made to show that the free flight control problem can be solved. What is more, by the proposed controller, a multicopter can keep away from another as soon as possible, once it enters into the safety area of another one. Simulations and experiments are given to show the effectiveness of the proposed method.
Modern cars are no longer purely mechanical devices but shelter so much digital technology that they resemble a network of computers. Electronic Control Units (ECUs) need to exchange a large amount of data for the various functions of the car to work, and such data must be made secure if we want those functions to work as intended despite malicious activity by attackers. TOUCAN is a new security protocol designed to be secure and at the same time both CAN and AUTOSAR compliant. It achieves security in terms of authenticity, integrity and confidentiality, yet without the need to upgrade (the hardware of) existing ECUs or enrich the network with novel components. The overhead is tiny, namely a reduction of the size of the Data field of a frame. A prototype implementation exhibits promising performance on a STM32F407Discovery board.
Understanding the inner workings of deep neural networks (DNNs) is essential to provide trustworthy artificial intelligence techniques for practical applications. Existing studies typically involve linking semantic concepts to units or layers of DNNs, but fail to explain the inference process. In this paper, we introduce neural architecture disentanglement (NAD) to fill the gap. Specifically, NAD learns to disentangle a pre-trained DNN into sub-architectures according to independent tasks, forming information flows that describe the inference processes. We investigate whether, where, and how the disentanglement occurs through experiments conducted with handcrafted and automatically-searched network architectures, on both object-based and scene-based datasets. Based on the experimental results, we present three new findings that provide fresh insights into the inner logic of DNNs. First, DNNs can be divided into sub-architectures for independent tasks. Second, deeper layers do not always correspond to higher semantics. Third, the connection type in a DNN affects how the information flows across layers, leading to different disentanglement behaviors. With NAD, we further explain why DNNs sometimes give wrong predictions. Experimental results show that misclassified images have a high probability of being assigned to task sub-architectures similar to the correct ones. Code will be available at: //github.com/hujiecpp/NAD.
It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.
The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore's Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today.
Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space. (2) A predictor takes the continuous representation of a network as input and predicts its accuracy. (3) A decoder maps a continuous representation of a network back to its architecture. The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy. Such a better embedding is then decoded to a network by the decoder. Experiments show that the architecture discovered by our method is very competitive for image classification task on CIFAR-10 and language modeling task on PTB, outperforming or on par with the best results of previous architecture search methods with a significantly reduction of computational resources. Specifically we obtain $2.07\%$ test set error rate for CIFAR-10 image classification task and $55.9$ test set perplexity of PTB language modeling task. The best discovered architectures on both tasks are successfully transferred to other tasks such as CIFAR-100 and WikiText-2.
Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and error-prone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.
Machine Learning models become increasingly proficient in complex tasks. However, even for experts in the field, it can be difficult to understand what the model learned. This hampers trust and acceptance, and it obstructs the possibility to correct the model. There is therefore a need for transparency of machine learning models. The development of transparent classification models has received much attention, but there are few developments for achieving transparent Reinforcement Learning (RL) models. In this study we propose a method that enables a RL agent to explain its behavior in terms of the expected consequences of state transitions and outcomes. First, we define a translation of states and actions to a description that is easier to understand for human users. Second, we developed a procedure that enables the agent to obtain the consequences of a single action, as well as its entire policy. The method calculates contrasts between the consequences of a policy derived from a user query, and of the learned policy of the agent. Third, a format for generating explanations was constructed. A pilot survey study was conducted to explore preferences of users for different explanation properties. Results indicate that human users tend to favor explanations about policy rather than about single actions.
Intelligent Transportation Systems (ITS) have become an important pillar in modern "smart city" framework which demands intelligent involvement of machines. Traffic load recognition can be categorized as an important and challenging issue for such systems. Recently, Convolutional Neural Network (CNN) models have drawn considerable amount of interest in many areas such as weather classification, human rights violation detection through images, due to its accurate prediction capabilities. This work tackles real-life traffic load recognition problem on System-On-a-Programmable-Chip (SOPC) platform and coin it as MAT-CNN- SOPC, which uses an intelligent re-training mechanism of the CNN with known environments. The proposed methodology is capable of enhancing the efficacy of the approach by 2.44x in comparison to the state-of-art and proven through experimental analysis. We have also introduced a mathematical equation, which is capable of quantifying the suitability of using different CNN models over the other for a particular application based implementation.