亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The simulation of many complex phenomena in engineering and science requires solving expensive, high-dimensional systems of partial differential equations (PDEs). To circumvent this, reduced-order models (ROMs) have been developed to speed up computations. However, when governing equations are unknown or partially known, typically ROMs lack interpretability and reliability of the predicted solutions. In this work we present a data-driven, non-intrusive framework for building ROMs where the latent variables and dynamics are identified in an interpretable manner and uncertainty is quantified. Starting from a limited amount of high-dimensional, noisy data the proposed framework constructs an efficient ROM by leveraging variational autoencoders for dimensionality reduction along with a newly introduced, variational version of sparse identification of nonlinear dynamics (SINDy), which we refer to as Variational Identification of Nonlinear Dynamics (VINDy). In detail, the method consists of Variational Encoding of Noisy Inputs (VENI) to identify the distribution of reduced coordinates. Simultaneously, we learn the distribution of the coefficients of a pre-determined set of candidate functions by VINDy. Once trained offline, the identified model can be queried for new parameter instances and new initial conditions to compute the corresponding full-time solutions. The probabilistic setup enables uncertainty quantification as the online testing consists of Variational Inference naturally providing Certainty Intervals (VICI). In this work we showcase the effectiveness of the newly proposed VINDy method in identifying interpretable and accurate dynamical system for the R\"ossler system with different noise intensities and sources. Then the performance of the overall method - named VENI, VINDy, VICI - is tested on PDE benchmarks including structural mechanics and fluid dynamics.

相關內容

Happ and Greven (2018) developed a methodology for principal components analysis of multivariate functional data for data observed on different dimensional domains. Their approach relies on an estimation of univariate functional principal components for each univariate functional feature. In this paper, we present extensive simulations to investigate choosing the number of principal components to retain. We show empirically that the conventional approach of using a percentage of variance explained threshold for each univariate functional feature may be unreliable when aiming to explain an overall percentage of variance in the multivariate functional data, and thus we advise practitioners to be careful when using it.

We present exact non-Gaussian joint likelihoods for auto- and cross-correlation functions on arbitrarily masked spherical Gaussian random fields. Our considerations apply to spin-0 as well as spin-2 fields but are demonstrated here for the spin-2 weak-lensing correlation function. We motivate that this likelihood cannot be Gaussian and show how it can nevertheless be calculated exactly for any mask geometry and on a curved sky, as well as jointly for different angular-separation bins and redshift-bin combinations. Splitting our calculation into a large- and small-scale part, we apply a computationally efficient approximation for the small scales that does not alter the overall non-Gaussian likelihood shape. To compare our exact likelihoods to correlation-function sampling distributions, we simulated a large number of weak-lensing maps, including shape noise, and find excellent agreement for one-dimensional as well as two-dimensional distributions. Furthermore, we compare the exact likelihood to the widely employed Gaussian likelihood and find significant levels of skewness at angular separations $\gtrsim 1^{\circ}$ such that the mode of the exact distributions is shifted away from the mean towards lower values of the correlation function. We find that the assumption of a Gaussian random field for the weak-lensing field is well valid at these angular separations. Considering the skewness of the non-Gaussian likelihood, we evaluate its impact on the posterior constraints on $S_8$. On a simplified weak-lensing-survey setup with an area of $10 \ 000 \ \mathrm{deg}^2$, we find that the posterior mean of $S_8$ is up to $2\%$ higher when using the non-Gaussian likelihood, a shift comparable to the precision of current stage-III surveys.

This paper presents a fitted space-time finite element method for solving a parabolic advection-diffusion problem with a nonstationary interface. The jumping diffusion coefficient gives rise to the discontinuity of the spatial gradient of solution across the interface. We use the Banach-Necas-Babuska theorem to show the well-posedness of the continuous variational problem. A fully discrete finite-element based scheme is analyzed using the Galerkin method and unstructured fitted meshes. An optimal error estimate is established in a discrete energy norm under appropriate globally low but locally high regularity conditions. Some numerical results corroborate our theoretical results.

We prove the existence of signed combinatorial interpretations for several large families of structure constants. These families include standard bases of symmetric and quasisymmetric polynomials, as well as various bases in Schubert theory. The results are stated in the language of computational complexity, while the proofs are based on the effective M\"obius inversion.

We introduce a method based on Gaussian process regression to identify discrete variational principles from observed solutions of a field theory. The method is based on the data-based identification of a discrete Lagrangian density. It is a geometric machine learning technique in the sense that the variational structure of the true field theory is reflected in the data-driven model by design. We provide a rigorous convergence statement of the method. The proof circumvents challenges posed by the ambiguity of discrete Lagrangian densities in the inverse problem of variational calculus. Moreover, our method can be used to quantify model uncertainty in the equations of motions and any linear observable of the discrete field theory. This is illustrated on the example of the discrete wave equation and Schr\"odinger equation. The article constitutes an extension of our previous article arXiv:2404.19626 for the data-driven identification of (discrete) Lagrangians for variational dynamics from an ode setting to the setting of discrete pdes.

We propose a topological mapping and localization system able to operate on real human colonoscopies, despite significant shape and illumination changes. The map is a graph where each node codes a colon location by a set of real images, while edges represent traversability between nodes. For close-in-time images, where scene changes are minor, place recognition can be successfully managed with the recent transformers-based local feature matching algorithms. However, under long-term changes -- such as different colonoscopies of the same patient -- feature-based matching fails. To address this, we train on real colonoscopies a deep global descriptor achieving high recall with significant changes in the scene. The addition of a Bayesian filter boosts the accuracy of long-term place recognition, enabling relocalization in a previously built map. Our experiments show that ColonMapper is able to autonomously build a map and localize against it in two important use cases: localization within the same colonoscopy or within different colonoscopies of the same patient. Code: //github.com/jmorlana/ColonMapper.

Several new geometric quantile-based measures for multivariate dispersion, skewness, kurtosis, and spherical asymmetry are defined. These measures differ from existing measures, which use volumes and are easy to calculate. Some theoretical justification is given, followed by experiments illustrating that they are reasonable measures of these distributional characteristics and computing confidence regions with the desired coverage.

A new approach based on censoring and moment criterion is introduced for parameter estimation of count distributions when the probability generating function is available even though a closed form of the probability mass function and/or finite moments do not exist.

One of the most promising applications of machine learning (ML) in computational physics is to accelerate the solution of partial differential equations (PDEs). The key objective of ML-based PDE solvers is to output a sufficiently accurate solution faster than standard numerical methods, which are used as a baseline comparison. We first perform a systematic review of the ML-for-PDE solving literature. Of articles that use ML to solve a fluid-related PDE and claim to outperform a standard numerical method, we determine that 79% (60/76) compare to a weak baseline. Second, we find evidence that reporting biases, especially outcome reporting bias and publication bias, are widespread. We conclude that ML-for-PDE solving research is overoptimistic: weak baselines lead to overly positive results, while reporting biases lead to underreporting of negative results. To a large extent, these issues appear to be caused by factors similar to those of past reproducibility crises: researcher degrees of freedom and a bias towards positive results. We call for bottom-up cultural changes to minimize biased reporting as well as top-down structural reforms intended to reduce perverse incentives for doing so.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司