亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In singing voice synthesis (SVS), generating singing voices from musical scores faces challenges due to limited data availability. This study proposes a unique strategy to address the data scarcity in SVS. We employ an existing singing voice synthesizer for data augmentation, complemented by detailed manual tuning, an approach not previously explored in data curation, to reduce instances of unnatural voice synthesis. This innovative method has led to the creation of two expansive singing voice datasets, ACE-Opencpop and ACE-KiSing, which are instrumental for large-scale, multi-singer voice synthesis. Through thorough experimentation, we establish that these datasets not only serve as new benchmarks for SVS but also enhance SVS performance on other singing voice datasets when used as supplementary resources. The corpora, pre-trained models, and their related training recipes are publicly available at ESPnet-Muskits (\url{//github.com/espnet/espnet})

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

The approximate nearest neighbor search (ANNS) is a fundamental and essential component in data mining and information retrieval, with graph-based methodologies demonstrating superior performance compared to alternative approaches. Extensive research efforts have been dedicated to improving search efficiency by developing various graph-based indices, such as HNSW (Hierarchical Navigable Small World). However, the performance of HNSW and most graph-based indices become unacceptable when faced with a large number of real-time deletions, insertions, and updates. Furthermore, during update operations, HNSW can result in some data points becoming unreachable, a situation we refer to as the `unreachable points phenomenon'. This phenomenon could significantly affect the search accuracy of the graph in certain situations. To address these issues, we present efficient measures to overcome the shortcomings of HNSW, specifically addressing poor performance over long periods of delete and update operations and resolving the issues caused by the unreachable points phenomenon. Our proposed MN-RU algorithm effectively improves update efficiency and suppresses the growth rate of unreachable points, ensuring better overall performance and maintaining the integrity of the graph. Our results demonstrate that our methods outperform existing approaches. Furthermore, since our methods are based on HNSW, they can be easily integrated with existing indices widely used in the industrial field, making them practical for future real-world applications. Code is available at \url{//github.com/xwt1/MN-RU.git}

Graph Neural Networks (GNNs) have achieved notable success in the analysis of non-Euclidean data across a wide range of domains. However, their applicability is constrained by the dependence on the observed graph structure. To solve this problem, Latent Graph Inference (LGI) is proposed to infer a task-specific latent structure by computing similarity or edge probability of node features and then apply a GNN to produce predictions. Even so, existing approaches neglect the noise from node features, which affects generated graph structure and performance. In this work, we introduce a novel method called Probability Passing to refine the generated graph structure by aggregating edge probabilities of neighboring nodes based on observed graph. Furthermore, we continue to utilize the LGI framework, inputting the refined graph structure and node features into GNNs to obtain predictions. We name the proposed scheme as Probability Passing-based Graph Neural Network (PPGNN). Moreover, the anchor-based technique is employed to reduce complexity and improve efficiency. Experimental results demonstrate the effectiveness of the proposed method.

Controllable music generation promotes the interaction between humans and composition systems by projecting the users' intent on their desired music. The challenge of introducing controllability is an increasingly important issue in the symbolic music generation field. When building controllable generative popular multi-instrument music systems, two main challenges typically present themselves, namely weak controllability and poor music quality. To address these issues, we first propose spatiotemporal features as powerful and fine-grained controls to enhance the controllability of the generative model. In addition, an efficient music representation called REMI_Track is designed to convert multitrack music into multiple parallel music sequences and shorten the sequence length of each track with Byte Pair Encoding (BPE) techniques. Subsequently, we release BandControlNet, a conditional model based on parallel Transformers, to tackle the multiple music sequences and generate high-quality music samples that are conditioned to the given spatiotemporal control features. More concretely, the two specially designed modules of BandControlNet, namely structure-enhanced self-attention (SE-SA) and Cross-Track Transformer (CTT), are utilized to strengthen the resulting musical structure and inter-track harmony modeling respectively. Experimental results tested on two popular music datasets of different lengths demonstrate that the proposed BandControlNet outperforms other conditional music generation models on most objective metrics in terms of fidelity and inference speed and shows great robustness in generating long music samples. The subjective evaluations show BandControlNet trained on short datasets can generate music with comparable quality to state-of-the-art models, while outperforming them significantly using longer datasets.

Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs, undermining their reliability. A comprehensive quantitative evaluation is necessary to identify and understand the extent of hallucinations in these models. However, existing benchmarks are often limited in scope, focusing mainly on object hallucinations. Furthermore, current evaluation methods struggle to effectively address the subtle semantic distinctions between model outputs and reference data, as well as the balance between hallucination and informativeness. To address these issues, we introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases. Moreover, we propose a large language model (LLM)-based two-stage evaluation framework that generalizes the popular CHAIR metric and incorporates both faithfulness and coverage into the evaluation. Experiments on 10 established LVLMs demonstrate that our evaluation metric is more comprehensive and better correlated with humans than existing work when evaluating on our challenging human-annotated benchmark dataset. Our work also highlights the critical balance between faithfulness and coverage of model outputs, and encourages future works to address hallucinations in LVLMs while keeping their outputs informative.

Large-scale text-to-music generation models have significantly enhanced music creation capabilities, offering unprecedented creative freedom. However, their ability to collaborate effectively with human musicians remains limited. In this paper, we propose a framework to describe the musical interaction process, which includes expression, interpretation, and execution of controls. Following this framework, we argue that the primary gap between existing text-to-music models and musicians lies in the interpretation stage, where models lack the ability to interpret controls from musicians. We also propose two strategies to address this gap and call on the music information retrieval community to tackle the interpretation challenge to improve human-AI musical collaboration.

Typical schemes for automated red-teaming large language models (LLMs) focus on discovering prompts that trigger a frozen language model (the defender) to generate toxic text. This often results in the prompting model (the adversary) producing text that is unintelligible and unlikely to arise. Here, we propose a reinforcement learning formulation of the LLM red-teaming task which allows us to discover prompts that both (1) trigger toxic outputs from a frozen defender and (2) have low perplexity as scored by the defender. We argue these cases are most pertinent in a red-teaming setting because of their likelihood to arise during normal use of the defender model. We solve this formulation through a novel online and weakly supervised variant of Identity Preference Optimization (IPO) on GPT-2 and GPT-2 XL defenders. We demonstrate that our policy is capable of generating likely prompts that also trigger toxicity. Finally, we qualitatively analyze learned strategies, trade-offs of likelihood and toxicity, and discuss implications. Source code is available for this project at: //github.com/sisl/ASTPrompter/.

Retrieval-augmented Generation (RAG) systems have been actively studied and deployed across various industries to query on domain-specific knowledge base. However, evaluating these systems presents unique challenges due to the scarcity of domain-specific queries and corresponding ground truths, as well as a lack of systematic approaches to diagnosing the cause of failure cases -- whether they stem from knowledge deficits or issues related to system robustness. To address these challenges, we introduce GRAMMAR (GRounded And Modular Methodology for Assessment of RAG), an evaluation framework comprising two key elements: 1) a data generation process that leverages relational databases and LLMs to efficiently produce scalable query-answer pairs for evaluation. This method facilitates the separation of query logic from linguistic variations, enabling the testing of hypotheses related to non-robust textual forms; and 2) an evaluation framework that differentiates knowledge gaps from robustness and enables the identification of defective modules. Our empirical results underscore the limitations of current reference-free evaluation approaches and the reliability of GRAMMAR to accurately identify model vulnerabilities. For implementation details, refer to our GitHub repository: //github.com/xinzhel/grammar.

The spiking neural networks (SNNs) that efficiently encode temporal sequences have shown great potential in extracting audio-visual joint feature representations. However, coupling SNNs (binary spike sequences) with transformers (float-point sequences) to jointly explore the temporal-semantic information still facing challenges. In this paper, we introduce a novel Spiking Tucker Fusion Transformer (STFT) for audio-visual zero-shot learning (ZSL). The STFT leverage the temporal and semantic information from different time steps to generate robust representations. The time-step factor (TSF) is introduced to dynamically synthesis the subsequent inference information. To guide the formation of input membrane potentials and reduce the spike noise, we propose a global-local pooling (GLP) which combines the max and average pooling operations. Furthermore, the thresholds of the spiking neurons are dynamically adjusted based on semantic and temporal cues. Integrating the temporal and semantic information extracted by SNNs and Transformers are difficult due to the increased number of parameters in a straightforward bilinear model. To address this, we introduce a temporal-semantic Tucker fusion module, which achieves multi-scale fusion of SNN and Transformer outputs while maintaining full second-order interactions. Our experimental results demonstrate the effectiveness of the proposed approach in achieving state-of-the-art performance in three benchmark datasets. The harmonic mean (HM) improvement of VGGSound, UCF101 and ActivityNet are around 15.4\%, 3.9\%, and 14.9\%, respectively.

Existing committee-based Byzantine state machine replication (SMR) protocols, typically deployed in production blockchains, face a clear trade-off: (1) they either achieve linear communication cost in the happy path, but sacrifice liveness during periods of asynchrony, or (2) they are robust (progress with probability one) but pay quadratic communication cost. We believe this trade-off is unwarranted since existing linear protocols still have asymptotic quadratic cost in the worst case. We design Ditto, a Byzantine SMR protocol that enjoys the best of both worlds: optimal communication on and off the happy path (linear and quadratic, respectively) and progress guarantee under asynchrony and DDoS attacks. We achieve this by replacing the view-synchronization of partially synchronous protocols with an asynchronous fallback mechanism at no extra asymptotic cost. Specifically, we start from HotStuff, a state-of-the-art linear protocol, and gradually build Ditto. As a separate contribution and an intermediate step, we design a 2-chain version of HotStuff, Jolteon, which leverages a quadratic view-change mechanism to reduce the latency of the standard 3-chain HotStuff. We implement and experimentally evaluate all our systems. Notably, Jolteon's commit latency outperforms HotStuff by 200-300ms with varying system size. Additionally, Ditto adapts to the network and provides better performance than Jolteon under faulty conditions and better performance than VABA (a state-of-the-art asynchronous protocol) under faultless conditions. This proves our case that breaking the robustness-efficiency trade-off is in the realm of practicality.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司