亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The study of leakage measures for privacy has been a subject of intensive research and is an important aspect of understanding how privacy leaks occur in computer programs. Differential privacy has been a focal point in the privacy community for some years and yet its leakage characteristics are not completely understood. In this paper we bring together two areas of research -- information theory and the g-leakage framework of quantitative information flow (QIF) -- to give an operational interpretation for the epsilon parameter of differential privacy. We find that epsilon emerges as a capacity measure in both frameworks; via (log)-lift, a popular measure in information theory; and via max-case g-leakage, which describes the leakage of any system to Bayesian adversaries modelled using ``worst-case'' assumptions under the QIF framework. Our characterisation resolves an important question of interpretability of epsilon and consolidates a number of disparate results covering the literature of both information theory and quantitative information flow.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 均方誤差 · 均值 · 方陣 · 優化器 ·
2022 年 12 月 8 日

This paper investigates the mean square error (MSE)-optimal conditional mean estimator (CME) in one-bit quantized systems in the context of channel estimation with jointly Gaussian inputs. We analyze the relationship of the generally nonlinear CME to the linear Bussgang estimator, a well-known method based on Bussgang's theorem. We highlight a novel observation that the Bussgang estimator is equal to the CME for different special cases, including the case of univariate Gaussian inputs and the case of multiple observations in the absence of additive noise prior to the quantization. For the general cases we conduct numerical simulations to quantify the gap between the Bussgang estimator and the CME. This gap increases for higher dimensions and longer pilot sequences. We propose an optimal pilot sequence, motivated by insights from the CME, and derive a novel closed-form expression of the MSE for that case. Afterwards, we find a closed-form limit of the MSE in the asymptotically large number of pilots regime that also holds for the Bussgang estimator. Lastly, we present numerical experiments for various system parameters and for different performance metrics which illuminate the behavior of the optimal channel estimator in the quantized regime. In this context, the well-known stochastic resonance effect that appears in quantized systems can be quantified.

Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern. An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients. This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model through federated learning (FL), using both secure multiparty computation (MPC) to ensure the confidentiality of each gradient update, and differential privacy to avoid data leakage in the resulting model. A major challenge in this setting is that common mechanisms for enforcing DP in deep learning, which inject real-valued noise, are fundamentally incompatible with MPC, which exchanges finite-field integers among the participants. Consequently, most existing DP mechanisms require rather high noise levels, leading to poor model utility. Motivated by this, we propose Skellam mixture mechanism (SMM), an approach to enforce DP on models built via FL. Compared to existing methods, SMM eliminates the assumption that the input gradients must be integer-valued, and, thus, reduces the amount of noise injected to preserve DP. Further, SMM allows tight privacy accounting due to the nice composition and sub-sampling properties of the Skellam distribution, which are key to accurate deep learning with DP. The theoretical analysis of SMM is highly non-trivial, especially considering (i) the complicated math of differentially private deep learning in general and (ii) the fact that the mixture of two Skellam distributions is rather complex, and to our knowledge, has not been studied in the DP literature. Extensive experiments on various practical settings demonstrate that SMM consistently and significantly outperforms existing solutions in terms of the utility of the resulting model.

Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in a case study that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of 7 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets.

While reinforcement learning (RL) has become a more popular approach for robotics, designing sufficiently informative reward functions for complex tasks has proven to be extremely difficult due their inability to capture human intent and policy exploitation. Preference based RL algorithms seek to overcome these challenges by directly learning reward functions from human feedback. Unfortunately, prior work either requires an unreasonable number of queries implausible for any human to answer or overly restricts the class of reward functions to guarantee the elicitation of the most informative queries, resulting in models that are insufficiently expressive for realistic robotics tasks. Contrary to most works that focus on query selection to \emph{minimize} the amount of data required for learning reward functions, we take an opposite approach: \emph{expanding} the pool of available data by viewing human-in-the-loop RL through the more flexible lens of multi-task learning. Motivated by the success of meta-learning, we pre-train preference models on prior task data and quickly adapt them for new tasks using only a handful of queries. Empirically, we reduce the amount of online feedback needed to train manipulation policies in Meta-World by 20$\times$, and demonstrate the effectiveness of our method on a real Franka Panda Robot. Moreover, this reduction in query-complexity allows us to train robot policies from actual human users. Videos of our results and code can be found at //sites.google.com/view/few-shot-preference-rl/home.

Firms and statistical agencies must protect the privacy of the individuals whose data they collect, analyze, and publish. Increasingly, these organizations do so by using publication mechanisms that satisfy differential privacy. We consider the problem of choosing such a mechanism so as to maximize the value of its output to end users. We show that this is a constrained information design problem, and characterize its solution. When the underlying database is drawn from a symmetric distribution -- for instance, if individuals' data are i.i.d. -- we show that the problem's dimensionality can be reduced, and that its solution belongs to a simpler class of mechanisms. When, in addition, data users have supermodular payoffs, we show that the simple geometric mechanism is always optimal by using a novel comparative static that ranks information structures according to their usefulness in supermodular decision problems.

Traditional single-input single-output and multiple-input multiple-output information theory adopt spatially discrete modeling, which does not fully capture the continuous nature of the underlying electromagnetic (EM) fields supporting the physical layer of wireless communication systems. Thus, it is of interest to examine the information-carrying capability of continuous EM fields, which motivates research on EM information theory (EIT). In this article, we systematically investigate the basic ideas and main results of EIT. First, we review the fundamental analytical tools of classical information theory and EM theory. Then, we introduce the modeling and analysis methodologies of EIT, including continuous field modeling, degree of freedom, mutual information, and capacity analyses. After that, several EIT-inspired applications are discussed to illustrate how EIT guides the design of practical wireless systems. Finally, we point out several open problems of EIT, where further research efforts are required for EIT to construct a unified interdisciplinary theory.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Next, we thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司