The booming of electric vehicles demands efficient battery disassembly for recycling to be environment-friendly. Currently, battery disassembly is still primarily done by humans, probably assisted by robots, due to the unstructured environment and high uncertainties. It is highly desirable to design autonomous solutions to improve work efficiency and lower human risks in high voltage and toxic environments. This paper proposes a novel neurosymbolic method, which augments the traditional Variational Autoencoder (VAE) model to learn symbolic operators based on raw sensory inputs and their relationships. The symbolic operators include a probabilistic state symbol grounding model and a state transition matrix for predicting states after each execution to enable autonomous task and motion planning. At last, the method's feasibility is verified through test results.
Photorealistic avatars of human faces have come a long way in recent years, yet research along this area is limited by a lack of publicly available, high-quality datasets covering both, dense multi-view camera captures, and rich facial expressions of the captured subjects. In this work, we present Multiface, a new multi-view, high-resolution human face dataset collected from 13 identities at Reality Labs Research for neural face rendering. We introduce Mugsy, a large scale multi-camera apparatus to capture high-resolution synchronized videos of a facial performance. The goal of Multiface is to close the gap in accessibility to high quality data in the academic community and to enable research in VR telepresence. Along with the release of the dataset, we conduct ablation studies on the influence of different model architectures toward the model's interpolation capacity of novel viewpoint and expressions. With a conditional VAE model serving as our baseline, we found that adding spatial bias, texture warp field, and residual connections improves performance on novel view synthesis. Our code and data is available at: //github.com/facebookresearch/multiface
This paper presents a multi-layer motion planning and control architecture for autonomous racing, capable of avoiding static obstacles, performing active overtakes, and reaching velocities above 75 $m/s$. The used offline global trajectory generation and the online model predictive controller are highly based on optimization and dynamic models of the vehicle, where the tires and camber effects are represented in an extended version of the basic Pacejka Magic Formula. The proposed single-track model is identified and validated using multi-body motorsport libraries which allow simulating the vehicle dynamics properly, especially useful when real experimental data are missing. The fundamental regularization terms and constraints of the controller are tuned to reduce the rate of change of the inputs while assuring an acceptable velocity and path tracking. The motion planning strategy consists of a Fren\'et-Frame-based planner which considers a forecast of the opponent produced by a Kalman filter. The planner chooses the collision-free path and velocity profile to be tracked on a 3 seconds horizon to realize different goals such as following and overtaking. The proposed solution has been applied on a Dallara AV-21 racecar and tested at oval race tracks achieving lateral accelerations up to 25 $m/s^{2}$.
Implicit neural representations have shown compelling results in offline 3D reconstruction and also recently demonstrated the potential for online SLAM systems. However, applying them to autonomous 3D reconstruction, where robots are required to explore a scene and plan a view path for the reconstruction, has not been studied. In this paper, we explore for the first time the possibility of using implicit neural representations for autonomous 3D scene reconstruction by addressing two key challenges: 1) seeking a criterion to measure the quality of the candidate viewpoints for the view planning based on the new representations, and 2) learning the criterion from data that can generalize to different scenes instead of hand-crafting one. For the first challenge, a proxy of Peak Signal-to-Noise Ratio (PSNR) is proposed to quantify a viewpoint quality. The proxy is acquired by treating the color of a spatial point in a scene as a random variable under a Gaussian distribution rather than a deterministic one; the variance of the distribution quantifies the uncertainty of the reconstruction and composes the proxy. For the second challenge, the proxy is optimized jointly with the parameters of an implicit neural network for the scene. With the proposed view quality criterion, we can then apply the new representations to autonomous 3D reconstruction. Our method demonstrates significant improvements on various metrics for the rendered image quality and the geometry quality of the reconstructed 3D models when compared with variants using TSDF or reconstruction without view planning.
Music signals are difficult to interpret from their low-level features, perhaps even more than images: e.g. highlighting part of a spectrogram or an image is often insufficient to convey high-level ideas that are genuinely relevant to humans. In computer vision, concept learning was therein proposed to adjust explanations to the right abstraction level (e.g. detect clinical concepts from radiographs). These methods have yet to be used for MIR. In this paper, we adapt concept learning to the realm of music, with its particularities. For instance, music concepts are typically non-independent and of mixed nature (e.g. genre, instruments, mood), unlike previous work that assumed disentangled concepts. We propose a method to learn numerous music concepts from audio and then automatically hierarchise them to expose their mutual relationships. We conduct experiments on datasets of playlists from a music streaming service, serving as a few annotated examples for diverse concepts. Evaluations show that the mined hierarchies are aligned with both ground-truth hierarchies of concepts -- when available -- and with proxy sources of concept similarity in the general case.
Electrocardiogram (ECG) is a widely used non-invasive diagnostic tool for heart diseases. Many studies have devised ECG analysis models (e.g., classifiers) to assist diagnosis. As an upstream task, researches have built generative models to synthesize ECG data, which are beneficial to providing training samples, privacy protection, and annotation reduction. However, previous generative methods for ECG often neither synthesized multi-view data, nor dealt with heart disease conditions. In this paper, we propose a novel disease-aware generative adversarial network for multi-view ECG synthesis called ME-GAN, which attains panoptic electrocardio representations conditioned on heart diseases and projects the representations onto multiple standard views to yield ECG signals. Since ECG manifestations of heart diseases are often localized in specific waveforms, we propose a new "mixup normalization" to inject disease information precisely into suitable locations. In addition, we propose a view discriminator to revert disordered ECG views into a pre-determined order, supervising the generator to obtain ECG representing correct view characteristics. Besides, a new metric, rFID, is presented to assess the quality of the synthesized ECG signals. Comprehensive experiments verify that our ME-GAN performs well on multi-view ECG signal synthesis with trusty morbid manifestations.
Predicting the future states of surrounding traffic participants and planning a safe, smooth, and socially compliant trajectory accordingly is crucial for autonomous vehicles. There are two major issues with the current autonomous driving system: the prediction module is often decoupled from the planning module and the cost function for planning is hard to specify and tune. To tackle these issues, we propose an end-to-end differentiable framework that integrates prediction and planning modules and is able to learn the cost function from data. Specifically, we employ a differentiable nonlinear optimizer as the motion planner, which takes the predicted trajectories of surrounding agents given by the neural network as input and optimizes the trajectory for the autonomous vehicle, thus enabling all operations in the framework to be differentiable including the cost function weights. The proposed framework is trained on a large-scale real-world driving dataset to imitate human driving trajectories in the entire driving scene and validated in both open-loop and closed-loop manners. The open-loop testing results reveal that the proposed method outperforms the baseline methods across a variety of metrics and delivers planning-centric prediction results, allowing the planning module to output close-to-human trajectories. In closed-loop testing, the proposed method shows the ability to handle complex urban driving scenarios and robustness against the distributional shift that imitation learning methods suffer from. Importantly, we find that joint training of planning and prediction modules achieves better performance than planning with a separate trained prediction module in both open-loop and closed-loop tests. Moreover, the ablation study indicates that the learnable components in the framework are essential to ensure planning stability and performance.
Cognitive science has shown that humans perceive videos in terms of events separated by the state changes of dominant subjects. State changes trigger new events and are one of the most useful among the large amount of redundant information perceived. However, previous research focuses on the overall understanding of segments without evaluating the fine-grained status changes inside. In this paper, we introduce a new dataset called Kinetic-GEB+. The dataset consists of over 170k boundaries associated with captions describing status changes in the generic events in 12K videos. Upon this new dataset, we propose three tasks supporting the development of a more fine-grained, robust, and human-like understanding of videos through status changes. We evaluate many representative baselines in our dataset, where we also design a new TPD (Temporal-based Pairwise Difference) Modeling method for visual difference and achieve significant performance improvements. Besides, the results show there are still formidable challenges for current methods in the utilization of different granularities, representation of visual difference, and the accurate localization of status changes. Further analysis shows that our dataset can drive developing more powerful methods to understand status changes and thus improve video level comprehension. The dataset is available at //github.com/Yuxuan-W/GEB-Plus
Training neural networks to perform 3D object detection for autonomous driving requires a large amount of diverse annotated data. However, obtaining training data with sufficient quality and quantity is expensive and sometimes impossible due to human and sensor constraints. Therefore, a novel solution is needed for extending current training methods to overcome this limitation and enable accurate 3D object detection. Our solution for the above-mentioned problem combines semi-pseudo-labeling and novel 3D augmentations. For demonstrating the applicability of the proposed method, we have designed a convolutional neural network for 3D object detection which can significantly increase the detection range in comparison with the training data distribution.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.