We consider gradient-related methods for low-rank matrix optimization with a smooth cost function. The methods operate on single factors of the low-rank factorization and share aspects of both alternating and Riemannian optimization. Two possible choices for the search directions based on Gauss-Southwell type selection rules are compared: one using the gradient of a factorized non-convex formulation, the other using the Riemannian gradient. While both methods provide gradient convergence guarantees that are similar to the unconstrained case, numerical experiments on a quadratic cost function indicate that the version based on the Riemannian gradient is significantly more robust with respect to small singular values and the condition number of the cost function. As a side result of our approach, we also obtain new convergence results for the alternating least squares method.
A novel overlapping domain decomposition splitting algorithm based on a Crank-Nisolson method is developed for the stochastic nonlinear Schroedinger equation driven by a multiplicative noise with non-periodic boundary conditions. The proposed algorithm can significantly reduce the computational cost while maintaining the similar conservation laws. Numerical experiments are dedicated to illustrating the capability of the algorithm for different spatial dimensions, as well as the various initial conditions. In particular, we compare the performance of the overlapping domain decomposition splitting algorithm with the stochastic multi-symplectic method in [S. Jiang, L. Wang and J. Hong, Commun. Comput. Phys., 2013] and the finite difference splitting scheme in [J. Cui, J. Hong, Z. Liu and W. Zhou, J. Differ. Equ., 2019]. We observe that our proposed algorithm has excellent computational efficiency and is highly competitive. It provides a useful tool for solving stochastic partial differential equations.
The nonlocality of the fractional operator causes numerical difficulties for long time computation of the time-fractional evolution equations. This paper develops a high-order fast time-stepping discontinuous Galerkin finite element method for the time-fractional diffusion equations, which saves storage and computational time. The optimal error estimate $O(N^{-p-1} + h^{m+1} + \varepsilon N^{r\alpha})$ of the current time-stepping discontinuous Galerkin method is rigorous proved, where $N$ denotes the number of time intervals, $p$ is the degree of polynomial approximation on each time subinterval, $h$ is the maximum space step, $r\ge1$, $m$ is the order of finite element space, and $\varepsilon>0$ can be arbitrarily small. Numerical simulations verify the theoretical analysis.
This paper introduces a formulation of the variable density incompressible Navier-Stokes equations by modifying the nonlinear terms in a consistent way. For Galerkin discretizations, the formulation leads to full discrete conservation of mass, squared density, momentum, angular momentum and kinetic energy without the divergence-free constraint being strongly enforced. In addition to favorable conservation properties, the formulation is shown to make the density field invariant to global shifts. The effect of viscous regularizations on conservation properties is also investigated. Numerical tests validate the theory developed in this work. The new formulation shows superior performance compared to other formulations from the literature, both in terms of accuracy for smooth problems and in terms of robustness.
Model-based sequential approaches to discrete "black-box" optimization, including Bayesian optimization techniques, often access the same points multiple times for a given objective function in interest, resulting in many steps to find the global optimum. Here, we numerically study the effect of a postprocessing method on Bayesian optimization that strictly prohibits duplicated samples in the dataset. We find the postprocessing method significantly reduces the number of sequential steps to find the global optimum, especially when the acquisition function is of maximum a posterior estimation. Our results provide a simple but general strategy to solve the slow convergence of Bayesian optimization for high-dimensional problems.
In Bayesian statistics, posterior contraction rates (PCRs) quantify the speed at which the posterior distribution concentrates on arbitrarily small neighborhoods of a true model, in a suitable way, as the sample size goes to infinity. In this paper, we develop a new approach to PCRs, with respect to strong norm distances on parameter spaces of functions. Critical to our approach is the combination of a local Lipschitz-continuity for the posterior distribution with a dynamic formulation of the Wasserstein distance, which allows to set forth an interesting connection between PCRs and some classical problems arising in mathematical analysis, probability and statistics, e.g., Laplace methods for approximating integrals, Sanov's large deviation principles in the Wasserstein distance, rates of convergence of mean Glivenko-Cantelli theorems, and estimates of weighted Poincar\'e-Wirtinger constants. We first present a theorem on PCRs for a model in the regular infinite-dimensional exponential family, which exploits sufficient statistics of the model, and then extend such a theorem to a general dominated model. These results rely on the development of novel techniques to evaluate Laplace integrals and weighted Poincar\'e-Wirtinger constants in infinite-dimension, which are of independent interest. The proposed approach is applied to the regular parametric model, the multinomial model, the finite-dimensional and the infinite-dimensional logistic-Gaussian model and the infinite-dimensional linear regression. In general, our approach leads to optimal PCRs in finite-dimensional models, whereas for infinite-dimensional models it is shown explicitly how the prior distribution affect PCRs.
A fully discrete finite difference scheme for stochastic reaction-diffusion equations driven by a $1+1$-dimensional white noise is studied. The optimal strong rate of convergence is proved without posing any regularity assumption on the non-linear reaction term. The proof relies on stochastic sewing techniques.
Stochastic optimization methods have been hugely successful in making large-scale optimization problems feasible when computing the full gradient is computationally prohibitive. Using the theory of modified equations for numerical integrators, we propose a class of stochastic differential equations that approximate the dynamics of general stochastic optimization methods more closely than the original gradient flow. Analyzing a modified stochastic differential equation can reveal qualitative insights about the associated optimization method. Here, we study mean-square stability of the modified equation in the case of stochastic coordinate descent.
We study matrix sensing, which is the problem of reconstructing a low-rank matrix from a few linear measurements. It can be formulated as an overparameterized regression problem, which can be solved by factorized gradient descent when starting from a small random initialization. Linear neural networks, and in particular matrix sensing by factorized gradient descent, serve as prototypical models of non-convex problems in modern machine learning, where complex phenomena can be disentangled and studied in detail. Much research has been devoted to studying special cases of asymmetric matrix sensing, such as asymmetric matrix factorization and symmetric positive semi-definite matrix sensing. Our key contribution is introducing a continuous differential equation that we call the $\textit{perturbed gradient flow}$. We prove that the perturbed gradient flow converges quickly to the true target matrix whenever the perturbation is sufficiently bounded. The dynamics of gradient descent for matrix sensing can be reduced to this formulation, yielding a novel proof of asymmetric matrix sensing with factorized gradient descent. Compared to directly analyzing the dynamics of gradient descent, the continuous formulation allows bounding key quantities by considering their derivatives, often simplifying the proofs. We believe the general proof technique may prove useful in other settings as well.
We extend the error bounds from [SIMAX, Vol. 43, Iss. 2, pp. 787-811 (2022)] for the Lanczos method for matrix function approximation to the block algorithm. Numerical experiments suggest that our bounds are fairly robust to changing block size and have the potential for use as a practical stopping criteria. Further experiments work towards a better understanding of how certain hyperparameters should be chosen in order to maximize the quality of the error bounds, even in the previously studied block-size one case.
The non-identifiability of the competing risks model requires researchers to work with restrictions on the model to obtain informative results. We present a new identifiability solution based on an exclusion restriction. Many areas of applied research use methods that rely on exclusion restrcitions. It appears natural to also use them for the identifiability of competing risks models. By imposing the exclusion restriction couple with an Archimedean copula, we are able to avoid any parametric restriction on the marginal distributions. We introduce a semiparametric estimation approach for the nonparametric marginals and the parametric copula. Our simulation results demonstrate the usefulness of the suggested model, as the degree of risk dependence can be estimated without parametric restrictions on the marginal distributions.