3D virtual simulation, which generates diversified test scenarios and tests full-stack of Autonomous Driving Systems (ADSes) modules dynamically as a whole, is a promising approach for Safety of The Intended Functionality (SOTIF) ADS testing. However, as different configurations of a test scenario will affect the sensor perceptions and environment interaction, e.g. light pulses emitted by the LiDAR sensor will undergo backscattering and attenuation, which is usually overlooked by existing works, leading to false positives or wrong results. Moreover, the input space of an ADS is extremely large, with infinite number of possible initial scenarios and mutations, along both temporal and spatial domains. This paper proposes a first-principles based sensor modeling and environment interaction scheme, and integrates it into CARLA simulator. With this scheme, a long-overlooked category of adverse weather related corner cases are discovered, along with their root causes. Moreover, a meta-heuristic algorithm is designed based on several empirical insights, which guide both seed scenarios and mutations, significantly reducing the search dimensions of scenarios and enhancing the efficiency of corner case identification. Experimental results show that under identical simulation setups, our algorithm discovers about four times as many corner cases as compared to state-of-the-art work.
We present AlloyInEcore, a tool for specifying metamodels with their static semantics to facilitate automated, formal reasoning on models. Software development projects require that software systems be specified in various models (e.g., requirements models, architecture models, test models, and source code). It is crucial to reason about those models to ensure the correct and complete system specifications. AlloyInEcore allows the user to specify metamodels with their static semantics, while, using the semantics, it automatically detects inconsistent models, and completes partial models. It has been evaluated on three industrial case studies in the automotive domain (//modelwriter.github.io/AlloyInEcore/).
Automatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. However, extracting information from textual rules to convert them to a machine-readable format has been a challenge due to the complexities associated with natural language and the limited resources that can support advanced machine-learning techniques. To address this challenge, we introduce CODE-ACCORD, a unique dataset compiled under the EU Horizon ACCORD project. CODE-ACCORD comprises 862 self-contained sentences extracted from the building regulations of England and Finland. Aligned with our core objective of facilitating information extraction from text for machine-readable rule generation, each sentence was annotated with entities and relations. Entities represent specific components such as "window" and "smoke detectors", while relations denote semantic associations between these entities, collectively capturing the conveyed ideas in natural language. We manually annotated all the sentences using a group of 12 annotators. Each sentence underwent annotations by multiple annotators and subsequently careful data curation to finalise annotations, ensuring their accuracy and reliability, thereby establishing the dataset as a solid ground truth. CODE-ACCORD offers a rich resource for diverse machine learning and natural language processing (NLP) related tasks in ACC, including text classification, entity recognition and relation extraction. To the best of our knowledge, this is the first entity and relation-annotated dataset in compliance checking, which is also publicly available.
Learning the mapping between two function spaces has garnered considerable research attention. However, learning the solution operator of partial differential equations (PDEs) remains a challenge in scientific computing. Fourier neural operator (FNO) was recently proposed to learn solution operators, and it achieved an excellent performance. In this study, we propose a novel \textit{pseudo-differential integral operator} (PDIO) to analyze and generalize the Fourier integral operator in FNO. PDIO is inspired by a pseudo-differential operator, which is a generalized differential operator characterized by a certain symbol. We parameterize this symbol using a neural network and demonstrate that the neural network-based symbol is contained in a smooth symbol class. Subsequently, we verify that the PDIO is a bounded linear operator, and thus is continuous in the Sobolev space. We combine the PDIO with the neural operator to develop a \textit{pseudo-differential neural operator} (PDNO) and learn the nonlinear solution operator of PDEs. We experimentally validate the effectiveness of the proposed model by utilizing Darcy flow and the Navier-Stokes equation. The obtained results indicate that the proposed PDNO outperforms the existing neural operator approaches in most experiments.
Most models for weakly supervised video anomaly detection (WS-VAD) rely on multiple instance learning, aiming to distinguish normal and abnormal snippets without specifying the type of anomaly. The ambiguous nature of anomaly definitions across contexts introduces bias in detecting abnormal and normal snippets within the abnormal bag. Taking the first step to show the model why it is anomalous, a novel framework is proposed to guide the learning of suspected anomalies from event prompts. Given a textual prompt dictionary of potential anomaly events and the captions generated from anomaly videos, the semantic anomaly similarity between them could be calculated to identify the suspected anomalous events for each video snippet. It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos, as well as provides a new way to label pseudo anomalies for self-training. To demonstrate effectiveness, comprehensive experiments and detailed ablation studies are conducted on four datasets, namely XD-Violence, UCF-Crime, TAD, and ShanghaiTech. Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC (82.6\%, 87.7\%, 93.1\%, and 97.4\%). Furthermore, it shows promising performance in open-set and cross-dataset cases.
Most existing weakly supervised semantic segmentation (WSSS) methods rely on Class Activation Mapping (CAM) to extract coarse class-specific localization maps using image-level labels. Prior works have commonly used an off-line heuristic thresholding process that combines the CAM maps with off-the-shelf saliency maps produced by a general pre-trained saliency model to produce more accurate pseudo-segmentation labels. We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from these saliency maps and the significant inter-task correlation between saliency detection and semantic segmentation. In the proposed AuxSegNet+, saliency detection and multi-label image classification are used as auxiliary tasks to improve the primary task of semantic segmentation with only image-level ground-truth labels. We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps. In particular, we propose a cross-task dual-affinity learning module to learn both pairwise and unary affinities, which are used to enhance the task-specific features and predictions by aggregating both query-dependent and query-independent global context for both saliency detection and semantic segmentation. The learned cross-task pairwise affinity can also be used to refine and propagate CAM maps to provide better pseudo labels for both tasks. Iterative improvement of segmentation performance is enabled by cross-task affinity learning and pseudo-label updating. Extensive experiments demonstrate the effectiveness of the proposed approach with new state-of-the-art WSSS results on the challenging PASCAL VOC and MS COCO benchmarks.
Addressing the limitations of individual attribution scores via the Shapley value (SV), the field of explainable AI (XAI) has recently explored intricate interactions of features or data points. In particular, extensions of the SV, such as the Shapley Interaction Index (SII), have been proposed as a measure to still benefit from the axiomatic basis of the SV. However, similar to the SV, their exact computation remains computationally prohibitive. Hence, we propose with SVARM-IQ a sampling-based approach to efficiently approximate Shapley-based interaction indices of any order. SVARM-IQ can be applied to a broad class of interaction indices, including the SII, by leveraging a novel stratified representation. We provide non-asymptotic theoretical guarantees on its approximation quality and empirically demonstrate that SVARM-IQ achieves state-of-the-art estimation results in practical XAI scenarios on different model classes and application domains.
This paper intends to apply the sample-average-approximation (SAA) scheme to solve a system of stochastic equations (SSE), which has many applications in a variety of fields. The SAA is an effective paradigm to address risks and uncertainty in stochastic models from the perspective of Monte Carlo principle. Nonetheless, a numerical conflict arises from the sample size of SAA when one has to make a tradeoff between the accuracy of solutions and the computational cost. To alleviate this issue, we incorporate a gradually reinforced SAA scheme into a differentiable homotopy method and develop a gradually reinforced sample-average-approximation (GRSAA) differentiable homotopy method in this paper. By introducing a series of continuously differentiable functions of the homotopy parameter $t$ ranging between zero and one, we establish a differentiable homotopy system, which is able to gradually increase the sample size of SAA as $t$ descends from one to zero. The set of solutions to the homotopy system contains an everywhere smooth path, which starts from an arbitrary point and ends at a solution to the SAA with any desired accuracy. The GRSAA differentiable homotopy method serves as a bridge to link the gradually reinforced SAA scheme and a differentiable homotopy method and retains the nice property of global convergence the homotopy method possesses while greatly reducing the computational cost for attaining a desired solution to the original SSE. Several numerical experiments further confirm the effectiveness and efficiency of the proposed method.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.