Bayesian Neural Networks (BNNs) provide a probabilistic interpretation for deep learning models by imposing a prior distribution over model parameters and inferring a posterior distribution based on observed data. The model sampled from the posterior distribution can be used for providing ensemble predictions and quantifying prediction uncertainty. It is well-known that deep learning models with lower sharpness have better generalization ability. However, existing posterior inferences are not aware of sharpness/flatness in terms of formulation, possibly leading to high sharpness for the models sampled from them. In this paper, we develop theories, the Bayesian setting, and the variational inference approach for the sharpness-aware posterior. Specifically, the models sampled from our sharpness-aware posterior, and the optimal approximate posterior estimating this sharpness-aware posterior, have better flatness, hence possibly possessing higher generalization ability. We conduct experiments by leveraging the sharpness-aware posterior with state-of-the-art Bayesian Neural Networks, showing that the flat-seeking counterparts outperform their baselines in all metrics of interest.
We introduce the Conditional Independence Regression CovariancE (CIRCE), a measure of conditional independence for multivariate continuous-valued variables. CIRCE applies as a regularizer in settings where we wish to learn neural features $\varphi(X)$ of data $X$ to estimate a target $Y$, while being conditionally independent of a distractor $Z$ given $Y$. Both $Z$ and $Y$ are assumed to be continuous-valued but relatively low dimensional, whereas $X$ and its features may be complex and high dimensional. Relevant settings include domain-invariant learning, fairness, and causal learning. The procedure requires just a single ridge regression from $Y$ to kernelized features of $Z$, which can be done in advance. It is then only necessary to enforce independence of $\varphi(X)$ from residuals of this regression, which is possible with attractive estimation properties and consistency guarantees. By contrast, earlier measures of conditional feature dependence require multiple regressions for each step of feature learning, resulting in more severe bias and variance, and greater computational cost. When sufficiently rich features are used, we establish that CIRCE is zero if and only if $\varphi(X) \perp \!\!\! \perp Z \mid Y$. In experiments, we show superior performance to previous methods on challenging benchmarks, including learning conditionally invariant image features.
Probabilistic solvers provide a flexible and efficient framework for simulation, uncertainty quantification, and inference in dynamical systems. However, like standard solvers, they suffer performance penalties for certain stiff systems, where small steps are required not for reasons of numerical accuracy but for the sake of stability. This issue is greatly alleviated in semi-linear problems by the probabilistic exponential integrators developed in this paper. By including the fast, linear dynamics in the prior, we arrive at a class of probabilistic integrators with favorable properties. Namely, they are proven to be L-stable, and in a certain case reduce to a classic exponential integrator -- with the added benefit of providing a probabilistic account of the numerical error. The method is also generalized to arbitrary non-linear systems by imposing piece-wise semi-linearity on the prior via Jacobians of the vector field at the previous estimates, resulting in probabilistic exponential Rosenbrock methods. We evaluate the proposed methods on multiple stiff differential equations and demonstrate their improved stability and efficiency over established probabilistic solvers. The present contribution thus expands the range of problems that can be effectively tackled within probabilistic numerics.
Reinforcement learning (RL) algorithms typically deal with maximizing the expected cumulative return (discounted or undiscounted, finite or infinite horizon). However, several crucial applications in the real world, such as drug discovery, do not fit within this framework because an RL agent only needs to identify states (molecules) that achieve the highest reward within a trajectory and does not need to optimize for the expected cumulative return. In this work, we formulate an objective function to maximize the expected maximum reward along a trajectory, derive a novel functional form of the Bellman equation, introduce the corresponding Bellman operators, and provide a proof of convergence. Using this formulation, we achieve state-of-the-art results on the task of molecule generation that mimics a real-world drug discovery pipeline.
We propose a combinatorial optimisation model called Limited Query Graph Connectivity Test. We consider a graph whose edges have two possible states (On/Off). The edges' states are hidden initially. We could query an edge to reveal its state. Given a source s and a destination t, we aim to test s-t connectivity by identifying either a path (consisting of only On edges) or a cut (consisting of only Off edges). We are limited to B queries, after which we stop regardless of whether graph connectivity is established. We aim to design a query policy that minimizes the expected number of queries. Our model is mainly motivated by a cyber security use case where we need to establish whether an attack path exists in a network, between a source and a destination. Edge query is resolved by manual effort from the IT admin, which is the motivation behind query minimization. Our model is highly related to monotone Stochastic Boolean Function Evaluation (SBFE). There are two existing exact algorithms for SBFE that are prohibitively expensive. We propose a significantly more scalable exact algorithm. While previous exact algorithms only scale for trivial graphs (i.e., past works experimented on at most 20 edges), we empirically demonstrate that our algorithm is scalable for a wide range of much larger practical graphs (i.e., Windows domain network graphs with tens of thousands of edges). We propose three heuristics. Our best-performing heuristic is via reducing the search horizon of the exact algorithm. The other two are via reinforcement learning (RL) and Monte Carlo tree search (MCTS). We also derive an anytime algorithm for computing the performance lower bound. Experimentally, we show that all our heuristics are near optimal. The exact algorithm based heuristic outperforms all, surpassing RL, MCTS and 8 existing heuristics ported from SBFE and related literature.
Re-training a deep learning model each time a single data point receives a new label is impractical due to the inherent complexity of the training process. Consequently, existing active learning (AL) algorithms tend to adopt a batch-based approach where, during each AL iteration, a set of data points is collectively chosen for annotation. However, this strategy frequently leads to redundant sampling, ultimately eroding the efficacy of the labeling procedure. In this paper, we introduce a new AL algorithm that harnesses the power of a Gaussian process surrogate in conjunction with the neural network principal learner. Our proposed model adeptly updates the surrogate learner for every new data instance, enabling it to emulate and capitalize on the continuous learning dynamics of the neural network without necessitating a complete retraining of the principal model for each individual label. Experiments on four benchmark datasets demonstrate that this approach yields significant enhancements, either rivaling or aligning with the performance of state-of-the-art techniques.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds. However, GCNs lack the ability to take into account the ordering of node neighbors, even when there is a geometric interpretation of the graph vertices that provides an order based on their spatial positions. To remedy this issue, we propose Geometric Graph Convolutional Network (geo-GCN) which uses spatial features to efficiently learn from graphs that can be naturally located in space. Our contribution is threefold: we propose a GCN-inspired architecture which (i) leverages node positions, (ii) is a proper generalisation of both GCNs and Convolutional Neural Networks (CNNs), (iii) benefits from augmentation which further improves the performance and assures invariance with respect to the desired properties. Empirically, geo-GCN outperforms state-of-the-art graph-based methods on image classification and chemical tasks.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.