亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

My research investigates the use of cutting-edge hybrid deep learning models to accurately differentiate between AI-generated text and human writing. I applied a robust methodology, utilising a carefully selected dataset comprising AI and human texts from various sources, each tagged with instructions. Advanced natural language processing techniques facilitated the analysis of textual features. Combining sophisticated neural networks, the custom model enabled it to detect nuanced differences between AI and human content.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 泛函 · 估計/估計量 · 噪聲 · SimPLe ·
2024 年 1 月 25 日

In black-box optimization, noise in the objective function is inevitable. Noise disrupts the ranking of candidate solutions in comparison-based optimization, possibly deteriorating the search performance compared with a noiseless scenario. Explicit averaging takes the sample average of noisy objective function values and is widely used as a simple and versatile noise-handling technique. Although it is suitable for various applications, it is ineffective if the mean is not finite. We theoretically reveal that explicit averaging has a negative effect on the estimation of ground-truth rankings when assuming stably distributed noise without a finite mean. Alternatively, sign averaging is proposed as a simple but robust noise-handling technique. We theoretically prove that the sign averaging estimates the order of the medians of the noisy objective function values of a pair of points with arbitrarily high probability as the number of samples increases. Its advantages over explicit averaging and its robustness are also confirmed through numerical experiments.

ReRecent studies in machine learning are based on models in which parameters or state variables are bounded restricted. These restrictions are from prior information to ensure the validity of scientific theories or structural consistency based on physical phenomena. The valuable information contained in the restrictions must be considered during the estimation process to improve estimation accuracy. Many researchers have focused on linear regression models subject to linear inequality restrictions, but generalized linear models have received little attention. In this paper, the parameters of beta Bayesian regression models subjected to linear inequality restrictions are estimated. The proposed Bayesian restricted estimator, which is demonstrated by simulated studies, outperforms ordinary estimators. Even in the presence of multicollinearity, it outperforms the ridge estimator in terms of the standard deviation and the mean squared error. The results confirm that the proposed Bayesian restricted estimator makes sparsity in parameter estimating without using the regularization penalty. Finally, a real data set is analyzed by the new proposed Bayesian estimation method.

Biped robots usually adopt feet with a rigid structure that simplifies walking on flat grounds and yet hinders ground adaptation in unstructured environments, thus jeopardizing stability. We recently explored in the SoftFoot the idea of adapting a robotic foot to ground irregularities along the sagittal plane. Building on the previous results, we propose in this paper a novel robotic foot able to adapt both in the sagittal and frontal planes, similarly to the human foot. It features five parallel modules with intrinsic longitudinal adaptability that can be combined in many possible designs through optional rigid or elastic connections. By following a methodological design approach, we narrow down the design space to five candidate foot designs and implement them on a modular system. Prototypes are tested experimentally via controlled application of force, through a robotic arm, onto a sensorized plate endowed with different obstacles. Their performance is compared, using also a rigid foot and the previous SoftFoot as a baseline. Analysis of footprint stability shows that the introduction of the transverse arch, by elastically connecting the five parallel modules, is advantageous for obstacle negotiation, especially when obstacles are located under the forefoot. In addition to biped robots' locomotion, this finding might also benefit lower-limb prostheses design.

Bayesian optimization (BO) is widely used to optimize expensive-to-evaluate black-box functions.BO first builds a surrogate model to represent the objective function and assesses its uncertainty. It then decides where to sample by maximizing an acquisition function (AF) based on the surrogate model. However, when dealing with high-dimensional problems, finding the global maximum of the AF becomes increasingly challenging. In such cases, the initialization of the AF maximizer plays a pivotal role, as an inadequate setup can severely hinder the effectiveness of the AF. This paper investigates a largely understudied problem concerning the impact of AF maximizer initialization on exploiting AFs' capability. Our large-scale empirical study shows that the widely used random initialization strategy often fails to harness the potential of an AF. In light of this, we propose a better initialization approach by employing multiple heuristic optimizers to leverage the historical data of black-box optimization to generate initial points for the AF maximize. We evaluate our approach with a range of heavily studied synthetic functions and real-world applications. Experimental results show that our techniques, while simple, can significantly enhance the standard BO and outperform state-of-the-art methods by a large margin in most test cases.

Although the task of anticipating future actions is highly uncertain, information from additional modalities help to narrow down plausible action choices. Each modality provides different environmental context for the model to learn from. While previous multi-modal methods leverage information from modalities such as video and audio, we primarily explore how text inputs for actions and objects can also enable more accurate action anticipation. Therefore, we propose a Multi-modal Anticipative Transformer (MAT), an attention-based video transformer architecture that jointly learns from multi-modal features and text captions. We train our model in two-stages, where the model first learns to predict actions in the video clip by aligning with captions, and during the second stage, we fine-tune the model to predict future actions. Compared to existing methods, MAT has the advantage of learning additional environmental context from two kinds of text inputs: action descriptions during the pre-training stage, and the text inputs for detected objects and actions during modality feature fusion. Through extensive experiments, we evaluate the effectiveness of the pre-training stage, and show that our model outperforms previous methods on all datasets. In addition, we examine the impact of object and action information obtained via text and perform extensive ablations. We evaluate the performance on on three datasets: EpicKitchens-100, EpicKitchens-55 and EGTEA GAZE+; and show that text descriptions do indeed aid in more effective action anticipation.

This study explores the impact of peer acknowledgement on learner engagement and implicit psychological attributes in written annotations on an online social reading platform. Participants included 91 undergraduates from a large North American University. Using log file data, we analyzed the relationship between learners' received peer acknowledgement and their subsequent annotation behaviours using cross-lag regression. Higher peer acknowledgements correlate with increased initiation of annotations and responses to peer annotations. By applying text mining techniques and calculating Shapley values to analyze 1,969 social annotation entries, we identified prominent psychological themes within three dimensions (i.e., affect, cognition, and motivation) that foster peer acknowledgment in digital social annotation. These themes include positive affect, openness to learning and discussion, and expression of motivation. The findings assist educators in improving online learning communities and provide guidance to technology developers in designing effective prompts, drawing from both implicit psychological cues and explicit learning behaviours.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.

Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.

北京阿比特科技有限公司