The coupling of cell-free massive MIMO (CF-mMIMO) with Mobile Edge Computing (MEC) is investigated in this paper. A MEC-enabled CF-mMIMO architecture implementing a distributed user-centric approach both from the radio and the computational resource allocation perspective is proposed. An optimization problem for the joint allocation of uplink powers and remote computational resources is formulated, aimed at minimizing the total uplink power consumption under power budget and latency constraints, while simultaneously maximizing the minimum SE throughout the network. In order to efficiently solve such a challenging non-convex problem, an iterative algorithm based on sequential convex programming is proposed, along with two approaches to priory assess the problem feasibility. Finally, a detailed performance comparison between the proposed MEC-enabled CF-mMIMO architecture and its cellular counterpart is provided. Numerical results reveal the effectiveness of the proposed joint optimization problem, and the natural suitability of CF-mMIMO in supporting computation-offloading applications with benefits over users' transmit power and energy consumption, the offloading latency experienced, and the total amount of allocated remote computational resources.
The roll-out phase of the next generation of mobile networks (5G) has started and operators are required to devise deployment solutions while pursuing localization accuracy maximization. Enabling location-based services is expected to be a unique selling point for service providers now able to deliver critical mobile services, e.g., autonomous driving, public safety, remote operations. In this paper, we propose a novel roll-out base station placement solution that, given a Throughput-Positioning Ratio (TPR) target, selects the location of new-generation base stations (among available candidate sites) such that the throughput and localization accuracy are jointly maximized. Moving away from the canonical position error bound (PEB) analysis, we develop a realistic framework in which each positioning measurement is affected by errors depending upon the actual wireless channel between the measuring base station and the target device. Our solution, referred to as LOKO, is a fast-converging algorithm that can be readily applied to current 5G (or future) roll-out processes. LOKO is validated by means of an exhaustive simulation campaign considering real existing deployments of a major European network operator as well as synthetic scenarios.
A joint sparse-regression-code (SPARC) and low-density-parity-check (LDPC) coding scheme for multiple-input multiple-output (MIMO) massive unsourced random access (URA) is proposed in this paper. Different from the state-of-the-art covariance-based maximum likelihood (CB-ML) detection scheme, we first split users' messages into two parts. The former part is encoded by SPARCs and tasked to recover part of the messages, the corresponding channel coefficients as well as the interleaving patterns by compressed sensing. The latter part is coded by LDPC codes and then interleaved by the interleave-division multiple access (IDMA) scheme. The decoding of the latter part is based on belief propagation (BP) joint with successive interference cancellation (SIC). Numerical results show our scheme outperforms the CB-ML scheme when the number of antennas at the base station is smaller than that of active users. The complexity of our scheme is with the order $\mathcal{O}\left(2^{B_p}ML+\widehat{K}ML\right)$ and lower than the CB-ML scheme. Moreover, our scheme has higher spectral efficiency (nearly $15$ times larger) than CB-ML as we only split messages into two parts.
Federated learning (FL) is a promising distributed learning technique particularly suitable for wireless learning scenarios since it can accomplish a learning task without raw data transportation so as to preserve data privacy and lower network resource consumption. However, current works on FL over wireless networks do not profoundly study the fundamental performance of FL over wireless networks that suffers from communication outage due to channel impairment and network interference. To accurately exploit the performance of FL over wireless networks, this paper proposes a novel intermittent FL model over a cellular-connected unmanned aerial vehicle (UAV) network, which characterizes communication outage from UAV (clients) to their server and data heterogeneity among the datasets at UAVs. We propose an analytically tractable framework to derive the uplink outage probability and use it to devise a simulation-based approach so as to evaluate the performance of the proposed intermittent FL model. Our findings reveal how the intermittent FL model is impacted by uplink communication outage and UAV deployment. Extensive numerical simulations are provided to show the consistency between the simulated and analytical performances of the proposed intermittent FL model.
This paper presents two novel hybrid beamforming (HYBF) designs for a multi-cell massive multiple-input-multiple-output (mMIMO) millimeter wave (mmWave) full duplex (FD) system under limited dynamic range (LDR). Firstly, we present a novel centralized HYBF (C-HYBF) scheme based on alternating optimization. In general, the complexity of C-HYBF schemes scales quadratically as a function of the number of users and cells, which may limit their scalability. Moreover, they require significant communication overhead to transfer complete channel state information (CSI) to the central node every channel coherence time for optimization. The central node also requires very high computational power to jointly optimize many variables for the uplink (UL) and downlink (DL) users in FD systems. To overcome these drawbacks, we propose a very low-complexity and scalable cooperative per-link parallel and distributed (P$\&$D)-HYBF scheme. It allows each mmWave FD base station (BS) to update the beamformers for its users in a distributed fashion and independently in parallel on different computational processors. The complexity of P$\&$D-HYBF scales only linearly as the network size grows, making it desirable for the next generation of large and dense mmWave FD networks. Simulation results show that both designs significantly outperform the fully digital half duplex (HD) system with only a few radio-frequency (RF) chains, achieve similar performance, and the P$\&$D-HYBF design requires considerably less execution time.
To mitigate the radar and communication frequency overlapping caused by massive devices access, we propose a novel joint communication and sensing (JCS) system in this paper, where a micro base station (MiBS) can realize target sensing and cooperative communication simultaneously. Concretely, the MiBS, as the sensing equipment, can also serve as a full-duplex (FD) decode-and-forward (DF) relay to assist the end-to-end communication. To further improve the spectrum utilization, non-orthogonal multiple access (NOMA) is adopted such that the communication between the macro base station (MaBS) and the Internet-of-Things (IoT) devices. To facilitate the performance evaluation, the exact and asymptotic outage probabilities, ergodic rates, sensing probability of the system are characterized. Subsequently, two optimal power allocation (OPA) problems of maximizing the received signal-to-interference-plus-noise ratio of sensing signal and maximizing the sum rate for communication are designed that are solved by means of the Lagrangian method and function monotonicity. The simulation results demonstrate that: 1) the proposed JCS NOMA system can accomplish both communication enhancement and sensing function under the premise of the same power consumption as non-cooperative NOMA; 2) the proposed OPA schemes manifest superiorities over a random power allocation scheme.
An increasing number of mobile applications rely on Machine Learning (ML) routines for analyzing data. Executing such tasks at the user devices saves the energy spent on transmitting and processing large data volumes at distant cloud-deployed servers. However, due to memory and computing limitations, the devices often cannot support the required resource-intensive routines and fail to accurately execute the tasks. In this work, we address the problem of edge-assisted analytics in resource-constrained systems by proposing and evaluating a rigorous selective offloading framework. The devices execute their tasks locally and outsource them to cloudlet servers only when they predict a significant performance improvement. We consider the practical scenario where the offloading gain and resource costs are time-varying; and propose an online optimization algorithm that maximizes the service performance without requiring to know this information. Our approach relies on an approximate dual subgradient method combined with a primal-averaging scheme, and works under minimal assumptions about the system stochasticity. We fully implement the proposed algorithm in a wireless testbed and evaluate its performance using a state-of-the-art image recognition application, finding significant performance gains and cost savings.
This paper proposes a novel broadband transmission technology, termed delay alignment modulation (DAM), which enables the low-complexity equalization-free single-carrier communication, yet without suffering from inter-symbol interference (ISI). The key idea of DAM is to deliberately introduce appropriate delays for information-bearing symbols at the transmitter side, so that after propagating over the time-dispersive channel, all multi-path signal components will arrive at the receiver simultaneously and constructively. We first show that by applying DAM for the basic multiple-input single-output (MISO) communication system, an ISI-free additive white Gaussian noise (AWGN) system can be obtained with the simple zero-forcing (ZF) beamforming. Furthermore, the more general DAM scheme is studied with the ISI-maximal-ratio transmission (MRT) and the ISI-minimum mean-square error (MMSE) beamforming. Simulation results are provided to show that when the channel is sparse and/or the antenna dimension is large, DAM not only resolves the notorious practical issues suffered by orthogonal frequency-division multiplexing (OFDM) such as high peak-to-average-power ratio (PAPR), severe out-of-band (OOB) emission, and vulnerability to carrier frequency offset (CFO), with low complexity, but also achieves higher spectral efficiency due to the saving of guard interval overhead.
The ever-increasing number of nodes in current and future wireless communication networks brings unprecedented challenges for the allocation of the available communication resources. This is caused by the combinatorial nature of the resource allocation problems, which limits the performance of state-of-the-art techniques when the network size increases. In this paper, we take a new direction and investigate how methods from statistical physics can be used to address resource allocation problems in large networks. To this aim, we propose a novel model of the wireless network based on a type of disordered physical systems called spin glasses. We show that resource allocation problems have the same structure as the problem of finding specific configurations in spin glasses. Based on this parallel, we investigate the use of the Survey Propagation method from statistical physics in the solution of resource allocation problems in wireless networks. Through numerical simulations we show that the proposed statistical-physics-based resource allocation algorithm is a promising tool for the efficient allocation of communication resources in large wireless communications networks. Given a fixed number of resources, we are able to serve a larger number of nodes, compared to state-of-the-art reference schemes, without introducing more interference into the system
Full Duplex (FD) communication can revolutionize wireless communications as it avoids using independent channels for bi-directional communications. This work generalizes the point-to-point FD communication in millimeter wave (mmWave) band consisting of K-pairs of massive MIMO FD nodes operating simultaneously. We present a novel joint hybrid beamforming (HYBF) and combining scheme for weighted sum-rate (WSR) maximization to enable the coexistence of massive MIMO FD links cost-efficiently. The proposed algorithm relies on alternative optimization based on the minorization-maximization method. Moreover, we present a novel SI and massive MIMO interference channel aware power allocation scheme to include the optimal power control. Simulation results show significant performance improvement compared to a traditional bidirectional fully digital half-duplex (HD) system.
In this paper, an interference-aware path planning scheme for a network of cellular-connected unmanned aerial vehicles (UAVs) is proposed. In particular, each UAV aims at achieving a tradeoff between maximizing energy efficiency and minimizing both wireless latency and the interference level caused on the ground network along its path. The problem is cast as a dynamic game among UAVs. To solve this game, a deep reinforcement learning algorithm, based on echo state network (ESN) cells, is proposed. The introduced deep ESN architecture is trained to allow each UAV to map each observation of the network state to an action, with the goal of minimizing a sequence of time-dependent utility functions. Each UAV uses ESN to learn its optimal path, transmission power level, and cell association vector at different locations along its path. The proposed algorithm is shown to reach a subgame perfect Nash equilibrium (SPNE) upon convergence. Moreover, an upper and lower bound for the altitude of the UAVs is derived thus reducing the computational complexity of the proposed algorithm. Simulation results show that the proposed scheme achieves better wireless latency per UAV and rate per ground user (UE) while requiring a number of steps that is comparable to a heuristic baseline that considers moving via the shortest distance towards the corresponding destinations. The results also show that the optimal altitude of the UAVs varies based on the ground network density and the UE data rate requirements and plays a vital role in minimizing the interference level on the ground UEs as well as the wireless transmission delay of the UAV.