亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. It is associated with an increased risk of stroke, heart failure, and other cardiovascular complications, but can be clinically silent. Passive AF monitoring with wearables may help reduce adverse clinical outcomes related to AF. Detecting AF in noisy wearable data poses a significant challenge, leading to the emergence of various deep learning techniques. Previous deep learning models learn from a single modality, either electrocardiogram (ECG) or photoplethysmography (PPG) signals. However, deep learning models often struggle to learn generalizable features and rely on features that are more susceptible to corruption from noise, leading to sub-optimal performances in certain scenarios, especially with low-quality signals. Given the increasing availability of ECG and PPG signal pairs from wearables and bedside monitors, we propose a new approach, SiamAF, leveraging a novel Siamese network architecture and joint learning loss function to learn shared information from both ECG and PPG signals. At inference time, the proposed model is able to predict AF from either PPG or ECG and outperforms baseline methods on three external test sets. It learns medically relevant features as a result of our novel architecture design. The proposed model also achieves comparable performance to traditional learning regimes while requiring much fewer training labels, providing a potential approach to reduce future reliance on manual labeling.

相關內容

Hallucination, posed as a pervasive challenge of multi-modal large language models (MLLMs), has significantly impeded their real-world usage that demands precise judgment. Existing methods mitigate this issue with either training with specific designed data or inferencing with external knowledge from other sources, incurring inevitable additional costs. In this paper, we present OPERA, a novel MLLM decoding method grounded in an Over-trust Penalty and a Retrospection-Allocation strategy, serving as a nearly free lunch to alleviate the hallucination issue without additional data, knowledge, or training. Our approach begins with an interesting observation that, most hallucinations are closely tied to the knowledge aggregation patterns manifested in the self-attention matrix, i.e., MLLMs tend to generate new tokens by focusing on a few summary tokens, but not all the previous tokens. Such partial over-trust inclination results in the neglecting of image tokens and describes the image content with hallucination. Statistically, we observe an 80%$\sim$95% co-currency rate between hallucination contents and such knowledge aggregation patterns. Based on the observation, OPERA introduces a penalty term on the model logits during the beam-search decoding to mitigate the over-trust issue, along with a rollback strategy that retrospects the presence of summary tokens in the previously generated tokens, and re-allocate the token selection if necessary. With extensive experiments, OPERA shows significant hallucination-mitigating performance on different MLLMs and metrics, proving its effectiveness and generality. Our code is available at: //github.com/shikiw/OPERA.

Training models with robust group fairness properties is crucial in ethically sensitive application areas such as medical diagnosis. Despite the growing body of work aiming to minimise demographic bias in AI, this problem remains challenging. A key reason for this challenge is the fairness generalisation gap: High-capacity deep learning models can fit all training data nearly perfectly, and thus also exhibit perfect fairness during training. In this case, bias emerges only during testing when generalisation performance differs across subgroups. This motivates us to take a bi-level optimisation perspective on fair learning: Optimising the learning strategy based on validation fairness. Specifically, we consider the highly effective workflow of adapting pre-trained models to downstream medical imaging tasks using parameter-efficient fine-tuning (PEFT) techniques. There is a trade-off between updating more parameters, enabling a better fit to the task of interest vs. fewer parameters, potentially reducing the generalisation gap. To manage this tradeoff, we propose FairTune, a framework to optimise the choice of PEFT parameters with respect to fairness. We demonstrate empirically that FairTune leads to improved fairness on a range of medical imaging datasets.

Ultrasound (US) imaging is widely used for biometric measurement and diagnosis of internal organs due to the advantages of being real-time and radiation-free. However, due to inter-operator variations, resulting images highly depend on the experience of sonographers. This work proposes an intelligent robotic sonographer to autonomously "explore" target anatomies and navigate a US probe to a relevant 2D plane by learning from the expert. The underlying high-level physiological knowledge from experts is inferred by a neural reward function, using a ranked pairwise image comparisons approach in a self-supervised fashion. This process can be referred to as understanding the "language of sonography". Considering the generalization capability to overcome inter-patient variations, mutual information is estimated by a network to explicitly disentangle the task-related and domain features in latent space. The robotic localization is carried out in coarse-to-fine mode based on the predicted reward associated with B-mode images. To validate the effectiveness of the proposed reward inference network, representative experiments were performed on vascular phantoms ("line" target), two types of ex-vivo animal organs (chicken heart and lamb kidney) phantoms ("point" target) and in-vivo human carotids, respectively. To further validate the performance of the autonomous acquisition framework, physical robotic acquisitions were performed on three phantoms (vascular, chicken heart, and lamb kidney). The results demonstrated that the proposed advanced framework can robustly work on a variety of seen and unseen phantoms as well as in-vivo human carotid data.

Traditional Chinese medicine (TCM) prescription is the most critical form of TCM treatment, and uncovering the complex nonlinear relationship between symptoms and TCM is of great significance for clinical practice and assisting physicians in diagnosis and treatment. Although there have been some studies on TCM prescription generation, these studies consider a single factor and directly model the symptom-prescription generation problem mainly based on symptom descriptions, lacking guidance from TCM knowledge. To this end, we propose a RoBERTa and Knowledge Enhancement model for Prescription Generation of Traditional Chinese Medicine (RoKEPG). RoKEPG is firstly pre-trained by our constructed TCM corpus, followed by fine-tuning the pre-trained model, and the model is guided to generate TCM prescriptions by introducing four classes of knowledge of TCM through the attention mask matrix. Experimental results on the publicly available TCM prescription dataset show that RoKEPG improves the F1 metric by about 2% over the baseline model with the best results.

Deep neural networks (DNNs) have been successfully applied in various fields. A major challenge of deploying DNNs, especially on edge devices, is power consumption, due to the large number of multiply-and-accumulate (MAC) operations. To address this challenge, we propose PowerPruning, a novel method to reduce power consumption in digital neural network accelerators by selecting weights that lead to less power consumption in MAC operations. In addition, the timing characteristics of the selected weights together with all activation transitions are evaluated. The weights and activations that lead to small delays are further selected. Consequently, the maximum delay of the sensitized circuit paths in the MAC units is reduced even without modifying MAC units, which thus allows a flexible scaling of supply voltage to reduce power consumption further. Together with retraining, the proposed method can reduce power consumption of DNNs on hardware by up to 78.3% with only a slight accuracy loss.

Virtual reality simulation has become a popular approach for training and assessing medical students. It offers diverse scenarios, realistic visuals, and quantitative performance metrics for objective evaluation. However, creating these simulations can be time-consuming and complex, even for experienced users. The SOFA framework is an open-source solution that efficiently simulates finite element (FE) models in real-time. Yet, some users find it challenging to navigate the software due to the numerous components required for a basic simulation and their variability. Additionally, SOFA has limited visual rendering capabilities, leading developers to integrate other software for high-quality visuals. To address these issues, we developed Filasofia, a dedicated framework that simplifies development, provides modern visualization, and allows fine-tuning using SOFA objects. Our experiments demonstrate that Filasofia outperforms conventional SOFA simulations, even with real-time subdivision. Our design approach aims to streamline development while offering flexibility for fine-tuning. Future work will focus on further simplification of the development process for users.

Deep learning has revolutionized the accurate segmentation of diseases in medical imaging. However, achieving such results requires training with numerous manual voxel annotations. This requirement presents a challenge for whole-body Positron Emission Tomography (PET) imaging, where lesions are scattered throughout the body. To tackle this problem, we introduce SW-FastEdit - an interactive segmentation framework that accelerates the labeling by utilizing only a few user clicks instead of voxelwise annotations. While prior interactive models crop or resize PET volumes due to memory constraints, we use the complete volume with our sliding window-based interactive scheme. Our model outperforms existing non-sliding window interactive models on the AutoPET dataset and generalizes to the previously unseen HECKTOR dataset. A user study revealed that annotators achieve high-quality predictions with only 10 click iterations and a low perceived NASA-TLX workload. Our framework is implemented using MONAI Label and is available: //github.com/matt3o/AutoPET2-Submission/

Quantification of cardiac motion with cine Cardiac Magnetic Resonance Imaging (CMRI) is an integral part of arrhythmogenic right ventricular cardiomyopathy (ARVC) diagnosis. Yet, the expert evaluation of motion abnormalities with CMRI is a challenging task. To automatically assess cardiac motion, we register CMRIs from different time points of the cardiac cycle using Implicit Neural Representations (INRs) and perform a biomechanically informed regularization inspired by the myocardial incompressibility assumption. To enhance the registration performance, our method first rectifies the inter-slice misalignment inherent to CMRI by performing a rigid registration guided by the long-axis views, and then increases the through-plane resolution using an unsupervised deep learning super-resolution approach. Finally, we propose to synergically combine information from short-axis and 4-chamber long-axis views, along with an initialization to incorporate information from multiple cardiac time points. Thereafter, to quantify cardiac motion, we calculate global and segmental strain over a cardiac cycle and compute the peak strain. The evaluation of the method is performed on a dataset of cine CMRI scans from 47 ARVC patients and 67 controls. Our results show that inter-slice alignment and generation of super-resolved volumes combined with joint analysis of the two cardiac views, notably improves registration performance. Furthermore, the proposed initialization yields more physiologically plausible registrations. The significant differences in the peak strain, discerned between the ARVC patients and healthy controls suggest that automated motion quantification methods may assist in diagnosis and provide further understanding of disease-specific alterations of cardiac motion.

ChatGPT and other Generative Artificial Intelligence (GAI) models tend to inherit and even amplify prevailing societal biases as they are trained on large amounts of existing data. Given the increasing usage of ChatGPT and other GAI by students, faculty members, and staff in higher education institutions (HEIs), there is an urgent need to examine the ethical issues involved such as its potential biases. In this scoping review, we clarify the ways in which biases related to GAI in higher education settings have been discussed in recent academic publications and identify what type of potential biases are commonly reported in this body of literature. We searched for academic articles written in English, Chinese, and Japanese across four main databases concerned with GAI usage in higher education and bias. Our findings show that while there is an awareness of potential biases around large language models (LLMs) and GAI, the majority of articles touch on ``bias'' at a relatively superficial level. Few identify what types of bias may occur under what circumstances. Neither do they discuss the possible implications for the higher education, staff, faculty members, or students. There is a notable lack of empirical work at this point, and we call for higher education researchers and AI experts to conduct more research in this area.

There is growing concern that the potential of black box AI may exacerbate health-related disparities and biases such as gender and ethnicity in clinical decision-making. Biased decisions can arise from data availability and collection processes, as well as from the underlying confounding effects of the protected attributes themselves. This work proposes a machine learning-based orthogonal approach aiming to analyze and suppress the effect of the confounder through discriminant dimensionality reduction and orthogonalization of the protected attributes against the primary attribute information. By doing so, the impact of the protected attributes on disease diagnosis can be realized, undesirable feature correlations can be mitigated, and the model prediction performance can be enhanced.

北京阿比特科技有限公司