We introduce a morpheme-aware subword tokenization method that utilizes sub-character decomposition to address the challenges of applying Byte Pair Encoding (BPE) to Korean, a language characterized by its rich morphology and unique writing system. Our approach balances linguistic accuracy with computational efficiency in Pre-trained Language Models (PLMs). Our evaluations show that this technique achieves good performances overall, notably improving results in the syntactic task of NIKL-CoLA. This suggests that integrating morpheme type information can enhance language models' syntactic and semantic capabilities, indicating that adopting more linguistic insights can further improve performance beyond standard morphological analysis.
Traffic accidents, being a significant contributor to both human casualties and property damage, have long been a focal point of research for many scholars in the field of traffic safety. However, previous studies, whether focusing on static environmental assessments or dynamic driving analyses, as well as pre-accident predictions or post-accident rule analyses, have typically been conducted in isolation. There has been a lack of an effective framework for developing a comprehensive understanding and application of traffic safety. To address this gap, this paper introduces AccidentGPT, a comprehensive accident analysis and prevention multi-modal large model. AccidentGPT establishes a multi-modal information interaction framework grounded in multi-sensor perception, thereby enabling a holistic approach to accident analysis and prevention in the field of traffic safety. Specifically, our capabilities can be categorized as follows: for autonomous driving vehicles, we provide comprehensive environmental perception and understanding to control the vehicle and avoid collisions. For human-driven vehicles, we offer proactive long-range safety warnings and blind-spot alerts while also providing safety driving recommendations and behavioral norms through human-machine dialogue and interaction. Additionally, for traffic police and management agencies, our framework supports intelligent and real-time analysis of traffic safety, encompassing pedestrian, vehicles, roads, and the environment through collaborative perception from multiple vehicles and road testing devices. The system is also capable of providing a thorough analysis of accident causes and liability after vehicle collisions. Our framework stands as the first large model to integrate comprehensive scene understanding into traffic safety studies. Project page: //accidentgpt.github.io
We show how to compute globally optimal solutions to inverse kinematics (IK) by formulating the problem as an indefinite quadratically constrained quadratic program. Our approach makes it feasible to solve IK instances of generic redundant manipulators. We demonstrate the performance on randomly generated designs and on real-world robots with up to ten revolute joints. The same technique can be used for manipulator design by introducing kinematic parameters as variables.
Speakers tend to engage in adaptive behavior, known as entrainment, when they become similar to their interlocutor in various aspects of speaking. We present an unsupervised deep learning framework that derives meaningful representation from textual features for developing semantic entrainment. We investigate the model's performance by extracting features using different variations of the BERT model (DistilBERT and XLM-RoBERTa) and Google's universal sentence encoder (USE) embeddings on two human-human (HH) corpora (The Fisher Corpus English Part 1, Columbia games corpus) and one human-machine (HM) corpus (Voice Assistant Conversation Corpus (VACC)). In addition to semantic features we also trained DNN-based models utilizing two auditory embeddings (TRIpLet Loss network (TRILL) vectors, Low-level descriptors (LLD) features) and two units of analysis (Inter pausal unit and Turn). The results show that semantic entrainment can be assessed with our model, that models can distinguish between HH and HM interactions and that the two units of analysis for extracting acoustic features provide comparable findings.
This tutorial aims to establish connections between polynomial modular multiplication over a ring to circular convolution and discrete Fourier transform (DFT). The main goal is to extend the well-known theory of DFT in signal processing (SP) to other applications involving polynomials in a ring such as homomorphic encryption (HE). HE allows any third party to operate on the encrypted data without decrypting it in advance. Since most HE schemes are constructed from the ring-learning with errors (R-LWE) problem, efficient polynomial modular multiplication implementation becomes critical. Any improvement in the execution of these building blocks would have significant consequences for the global performance of HE. This lecture note describes three approaches to implementing long polynomial modular multiplication using the number theoretic transform (NTT): zero-padded convolution, without zero-padding, also referred to as negative wrapped convolution (NWC), and low-complexity NWC (LC-NWC).
We explore some connections between association schemes and the analyses of the semidefinite programming (SDP) based convex relaxations of combinatorial optimization problems in the Lov\'{a}sz--Schrijver lift-and-project hierarchy. Our analysis of the relaxations of the stable set polytope leads to bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman, as well as the notion of deeply vertex-transitive graphs -- highly symmetric graphs that we show arise naturally from some association schemes. We also study relaxations of the hypergraph matching problem, and determine exactly or provide bounds on the lift-and-project ranks of these relaxations. Our proofs for these results also inspire the study of the general hypermatching pseudo-scheme, which is an association scheme except it is generally non-commutative. We then illustrate the usefulness of obtaining commutative subschemes from non-commutative pseudo-schemes via contraction in this context.
Multimodal intent recognition aims to leverage diverse modalities such as expressions, body movements and tone of speech to comprehend user's intent, constituting a critical task for understanding human language and behavior in real-world multimodal scenarios. Nevertheless, the majority of existing methods ignore potential correlations among different modalities and own limitations in effectively learning semantic features from nonverbal modalities. In this paper, we introduce a token-level contrastive learning method with modality-aware prompting (TCL-MAP) to address the above challenges. To establish an optimal multimodal semantic environment for text modality, we develop a modality-aware prompting module (MAP), which effectively aligns and fuses features from text, video and audio modalities with similarity-based modality alignment and cross-modality attention mechanism. Based on the modality-aware prompt and ground truth labels, the proposed token-level contrastive learning framework (TCL) constructs augmented samples and employs NT-Xent loss on the label token. Specifically, TCL capitalizes on the optimal textual semantic insights derived from intent labels to guide the learning processes of other modalities in return. Extensive experiments show that our method achieves remarkable improvements compared to state-of-the-art methods. Additionally, ablation analyses demonstrate the superiority of the modality-aware prompt over the handcrafted prompt, which holds substantial significance for multimodal prompt learning. The codes are released at //github.com/thuiar/TCL-MAP.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.