亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gait recognition holds the promise of robustly identifying subjects based on their walking patterns instead of color information. While previous approaches have performed well for curated indoor scenes, they have significantly impeded applicability in unconstrained situations, e.g. outdoor, long distance scenes. We propose an end-to-end GAit DEtection and Recognition (GADER) algorithm for human authentication in challenging outdoor scenarios. Specifically, GADER leverages a Double Helical Signature to detect the fragment of human movement and incorporates a novel gait recognition method, which learns representations by distilling from an auxiliary RGB recognition model. At inference time, GADER only uses the silhouette modality but benefits from a more robust representation. Extensive experiments on indoor and outdoor datasets demonstrate that the proposed method outperforms the State-of-The-Arts for gait recognition and verification, with a significant 20.6% improvement on unconstrained, long distance scenes.

相關內容

Federated training of Graph Neural Networks (GNN) has become popular in recent years due to its ability to perform graph-related tasks under data isolation scenarios while preserving data privacy. However, graph heterogeneity issues in federated GNN systems continue to pose challenges. Existing frameworks address the problem by representing local tasks using different statistics and relating them through a simple aggregation mechanism. However, these approaches suffer from limited efficiency from two aspects: low quality of task-relatedness quantification and inefficacy of exploiting the collaboration structure. To address these issues, we propose FedGKD, a novel federated GNN framework that utilizes a novel client-side graph dataset distillation method to extract task features that better describe task-relatedness, and introduces a novel server-side aggregation mechanism that is aware of the global collaboration structure. We conduct extensive experiments on six real-world datasets of different scales, demonstrating our framework's outperformance.

Controlled execution of dynamic motions in quadrupedal robots, especially those with articulated soft bodies, presents a unique set of challenges that traditional methods struggle to address efficiently. In this study, we tackle these issues by relying on a simple yet effective two-stage learning framework to generate dynamic motions for quadrupedal robots. First, a gradient-free evolution strategy is employed to discover simply represented control policies, eliminating the need for a predefined reference motion. Then, we refine these policies using deep reinforcement learning. Our approach enables the acquisition of complex motions like pronking and back-flipping, effectively from scratch. Additionally, our method simplifies the traditionally labour-intensive task of reward shaping, boosting the efficiency of the learning process. Importantly, our framework proves particularly effective for articulated soft quadrupeds, whose inherent compliance and adaptability make them ideal for dynamic tasks but also introduce unique control challenges.

The rise of advanced persistent threats (APTs) has marked a significant cybersecurity challenge, characterized by sophisticated orchestration, stealthy execution, extended persistence, and targeting valuable assets across diverse sectors. Provenance graph-based kernel-level auditing has emerged as a promising approach to enhance visibility and traceability within intricate network environments. However, it still faces challenges including reconstructing complex lateral attack chains, detecting dynamic evasion behaviors, and defending smart adversarial subgraphs. To bridge the research gap, this paper proposes an efficient and robust APT defense scheme leveraging provenance graphs, including a network-level distributed audit model for cost-effective lateral attack reconstruction, a trust-oriented APT evasion behavior detection strategy, and a hidden Markov model based adversarial subgraph defense approach. Through prototype implementation and extensive experiments, we validate the effectiveness of our system. Lastly, crucial open research directions are outlined in this emerging field.

The advent of artificial intelligence-generated content (AIGC) represents a pivotal moment in the evolution of information technology. With AIGC, it can be effortless to generate high-quality data that is challenging for the public to distinguish. Nevertheless, the proliferation of generative data across cyberspace brings security and privacy issues, including privacy leakages of individuals and media forgery for fraudulent purposes. Consequently, both academia and industry begin to emphasize the trustworthiness of generative data, successively providing a series of countermeasures for security and privacy. In this survey, we systematically review the security and privacy on generative data in AIGC, particularly for the first time analyzing them from the perspective of information security properties. Specifically, we reveal the successful experiences of state-of-the-art countermeasures in terms of the foundational properties of privacy, controllability, authenticity, and compliance, respectively. Finally, we summarize the open challenges and potential exploration directions from each of theses properties.

Chatbots have been studied for more than half a century. With the rapid development of natural language processing (NLP) technologies in recent years, chatbots using large language models (LLMs) have received much attention nowadays. Compared with traditional ones, modern chatbots are more powerful and have been used in real-world applications. There are however, bias and fairness concerns in modern chatbot design. Due to the huge amounts of training data, extremely large model sizes, and lack of interpretability, bias mitigation and fairness preservation of modern chatbots are challenging. Thus, a comprehensive overview on bias and fairness in chatbot systems is given in this paper. The history of chatbots and their categories are first reviewed. Then, bias sources and potential harms in applications are analyzed. Considerations in designing fair and unbiased chatbot systems are examined. Finally, future research directions are discussed.

One key bottleneck of employing state-of-the-art semantic segmentation networks in the real world is the availability of training labels. Conventional semantic segmentation networks require massive pixel-wise annotated labels to reach state-of-the-art prediction quality. Hence, several works focus on semantic segmentation networks trained with only image-level annotations. However, when scrutinizing the results of state-of-the-art in more detail, we notice that they are remarkably close to each other on average prediction quality, different approaches perform better in different classes while providing low quality in others. To address this problem, we propose a novel framework, ISLE, which employs an ensemble of the "pseudo-labels" for a given set of different semantic segmentation techniques on a class-wise level. Pseudo-labels are the pixel-wise predictions of the image-level semantic segmentation frameworks used to train the final segmentation model. Our pseudo-labels seamlessly combine the strong points of multiple segmentation techniques approaches to reach superior prediction quality. We reach up to 2.4% improvement over ISLE's individual components. An exhaustive analysis was performed to demonstrate ISLE's effectiveness over state-of-the-art frameworks for image-level semantic segmentation.

The need for improved network situational awareness has been highlighted by the growing complexity and severity of cyber-attacks. Mobile phones pose a significant risk to network situational awareness due to their dynamic behaviour and lack of visibility on a network. Machine learning techniques enhance situational awareness by providing administrators insight into the devices and activities which form their network. Developing machine learning techniques for situational awareness requires a testbed to generate and label network traffic. Current testbeds, however, are unable to automate the generation and labelling of realistic network traffic. To address this, we describe a testbed which automates applications on mobile devices to generate and label realistic traffic. From this testbed, two labelled datasets of network traffic have been created. We provide an analysis of the testbed automation reliability and benchmark the datasets for the task of application classification.

Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks. As a result, there has been an urgent need to evaluate LLMs as agents on challenging tasks in interactive environments. We present AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting. Our extensive test over 25 LLMs (including APIs and open-sourced models) shows that, while top commercial LLMs present a strong ability of acting as agents in complex environments, there is a significant disparity in performance between them and open-sourced competitors. It also serves as a component of an ongoing project with wider coverage and deeper consideration towards systematic LLM evaluation. Datasets, environments, and an integrated evaluation package for AgentBench are released at //github.com/THUDM/AgentBench

Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers can not see a panorama of the graph neural networks. This survey aims to overcome this limitation, and provide a comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 400 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the facing challenges. It is expected that more and more scholars can understand and exploit the graph neural networks, and use them in their research community.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

北京阿比特科技有限公司