亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advancements in neural end-to-end TTS models have shown high-quality, natural synthesized speech in a conventional sentence-based TTS. However, it is still challenging to reproduce similar high quality when a whole paragraph is considered in TTS, where a large amount of contextual information needs to be considered in building a paragraph-based TTS model. To alleviate the difficulty in training, we propose to model linguistic and prosodic information by considering cross-sentence, embedded structure in training. Three sub-modules, including linguistics-aware, prosody-aware and sentence-position networks, are trained together with a modified Tacotron2. Specifically, to learn the information embedded in a paragraph and the relations among the corresponding component sentences, we utilize linguistics-aware and prosody-aware networks. The information in a paragraph is captured by encoders and the inter-sentence information in a paragraph is learned with multi-head attention mechanisms. The relative sentence position in a paragraph is explicitly exploited by a sentence-position network. Trained on a storytelling audio-book corpus (4.08 hours), recorded by a female Mandarin Chinese speaker, the proposed TTS model demonstrates that it can produce rather natural and good-quality speech paragraph-wise. The cross-sentence contextual information, such as break and prosodic variations between consecutive sentences, can be better predicted and rendered than the sentence-based model. Tested on paragraph texts, of which the lengths are similar to, longer than, or much longer than the typical paragraph length of the training data, the TTS speech produced by the new model is consistently preferred over the sentence-based model in subjective tests and confirmed in objective measures.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 對數幾率回歸 · 神經語言模型 · cache · 分離的 ·
2022 年 10 月 25 日

Word order choices during sentence production can be primed by preceding sentences. In this work, we test the DUAL MECHANISM hypothesis that priming is driven by multiple different sources. Using a Hindi corpus of text productions, we model lexical priming with an n-gram cache model and we capture more abstract syntactic priming with an adaptive neural language model. We permute the preverbal constituents of corpus sentences, and then use a logistic regression model to predict which sentences actually occurred in the corpus against artificially generated meaning-equivalent variants. Our results indicate that lexical priming and lexically-independent syntactic priming affect complementary sets of verb classes. By showing that different priming influences are separable from one another, our results support the hypothesis that multiple different cognitive mechanisms underlie priming.

A standard measure of the influence of a research paper is the number of times it is cited. However, papers may be cited for many reasons, and citation count offers limited information about the extent to which a paper affected the content of subsequent publications. We therefore propose a novel method to quantify linguistic influence in timestamped document collections. There are two main steps: first, identify lexical and semantic changes using contextual embeddings and word frequencies; second, aggregate information about these changes into per-document influence scores by estimating a high-dimensional Hawkes process with a low-rank parameter matrix. We show that this measure of linguistic influence is predictive of $\textit{future}$ citations: the estimate of linguistic influence from the two years after a paper's publication is correlated with and predictive of its citation count in the following three years. This is demonstrated using an online evaluation with incremental temporal training/test splits, in comparison with a strong baseline that includes predictors for initial citation counts, topics, and lexical features.

Though linguistic knowledge emerges during large-scale language model pretraining, recent work attempt to explicitly incorporate human-defined linguistic priors into task-specific fine-tuning. Infusing language models with syntactic or semantic knowledge from parsers has shown improvements on many language understanding tasks. To further investigate the effectiveness of structural linguistic priors, we conduct empirical study of replacing parsed graphs or trees with trivial ones (rarely carrying linguistic knowledge e.g., balanced tree) for tasks in the GLUE benchmark. Encoding with trivial graphs achieves competitive or even better performance in fully-supervised and few-shot settings. It reveals that the gains might not be significantly attributed to explicit linguistic priors but rather to more feature interactions brought by fusion layers. Hence we call for attention to using trivial graphs as necessary baselines to design advanced knowledge fusion methods in the future.

Document intelligence as a relatively new research topic supports many business applications. Its main task is to automatically read, understand, and analyze documents. However, due to the diversity of formats (invoices, reports, forms, etc.) and layouts in documents, it is difficult to make machines understand documents. In this paper, we present the GraphDoc, a multimodal graph attention-based model for various document understanding tasks. GraphDoc is pre-trained in a multimodal framework by utilizing text, layout, and image information simultaneously. In a document, a text block relies heavily on its surrounding contexts, accordingly we inject the graph structure into the attention mechanism to form a graph attention layer so that each input node can only attend to its neighborhoods. The input nodes of each graph attention layer are composed of textual, visual, and positional features from semantically meaningful regions in a document image. We do the multimodal feature fusion of each node by the gate fusion layer. The contextualization between each node is modeled by the graph attention layer. GraphDoc learns a generic representation from only 320k unlabeled documents via the Masked Sentence Modeling task. Extensive experimental results on the publicly available datasets show that GraphDoc achieves state-of-the-art performance, which demonstrates the effectiveness of our proposed method. The code is available at //github.com/ZZR8066/GraphDoc.

While neural methods for text-to-speech (TTS) have shown great advances in modeling multiple speakers, even in zero-shot settings, the amount of data needed for those approaches is generally not feasible for the vast majority of the world's over 6,000 spoken languages. In this work, we bring together the tasks of zero-shot voice cloning and multilingual low-resource TTS. Using the language agnostic meta learning (LAML) procedure and modifications to a TTS encoder, we show that it is possible for a system to learn speaking a new language using just 5 minutes of training data while retaining the ability to infer the voice of even unseen speakers in the newly learned language. We show the success of our proposed approach in terms of intelligibility, naturalness and similarity to target speaker using objective metrics as well as human studies and provide our code and trained models open source.

The usage of automatic speech recognition (ASR) systems are becoming omnipresent ranging from personal assistant to chatbots, home, and industrial automation systems, etc. Modern robots are also equipped with ASR capabilities for interacting with humans as speech is the most natural interaction modality. However, ASR in robots faces additional challenges as compared to a personal assistant. Being an embodied agent, a robot must recognize the physical entities around it and therefore reliably recognize the speech containing the description of such entities. However, current ASR systems are often unable to do so due to limitations in ASR training, such as generic datasets and open-vocabulary modeling. Also, adverse conditions during inference, such as noise, accented, and far-field speech makes the transcription inaccurate. In this work, we present a method to incorporate a robot's visual information into an ASR system and improve the recognition of a spoken utterance containing a visible entity. Specifically, we propose a new decoder biasing technique to incorporate the visual context while ensuring the ASR output does not degrade for incorrect context. We achieve a 59% relative reduction in WER from an unmodified ASR system.

To understand what kinds of linguistic knowledge are encoded by pretrained Chinese language models (LMs), we introduce the benchmark of Sino LINGuistics (SLING), which consists of 38K minimal sentence pairs in Mandarin Chinese grouped into 9 high-level linguistic phenomena. Each pair demonstrates the acceptability contrast of a specific syntactic or semantic phenomenon (e.g., The keys are lost vs. The keys is lost), and an LM should assign lower perplexity to the acceptable sentence. In contrast to the CLiMP dataset (Xiang et al., 2021), which also contains Chinese minimal pairs and was created by translating the vocabulary of the English BLiMP dataset, the minimal pairs in SLING are derived primarily by applying syntactic and lexical transformations to naturally-occurring, linguist-annotated sentences from the Chinese Treebank 9.0, thus addressing severe issues in CLiMP's data generation process. We test 18 publicly available pretrained monolingual (e.g., BERT-base-zh, CPM) and multi-lingual (e.g., mT5, XLM) language models on SLING. Our experiments show that the average accuracy for LMs is far below human performance (69.7% vs. 97.1%), while BERT-base-zh achieves the highest accuracy (84.8%) of all tested LMs, even much larger ones. Additionally, we find that most LMs have a strong gender and number (singular/plural) bias, and they perform better on local phenomena than hierarchical ones.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司