亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The conventional discourse on existential risks (x-risks) from AI typically focuses on abrupt, dire events caused by advanced AI systems, particularly those that might achieve or surpass human-level intelligence. These events have severe consequences that either lead to human extinction or irreversibly cripple human civilization to a point beyond recovery. This discourse, however, often neglects the serious possibility of AI x-risks manifesting incrementally through a series of smaller yet interconnected disruptions, gradually crossing critical thresholds over time. This paper contrasts the conventional "decisive AI x-risk hypothesis" with an "accumulative AI x-risk hypothesis." While the former envisions an overt AI takeover pathway, characterized by scenarios like uncontrollable superintelligence, the latter suggests a different causal pathway to existential catastrophes. This involves a gradual accumulation of critical AI-induced threats such as severe vulnerabilities and systemic erosion of econopolitical structures. The accumulative hypothesis suggests a boiling frog scenario where incremental AI risks slowly converge, undermining resilience until a triggering event results in irreversible collapse. Through systems analysis, this paper examines the distinct assumptions differentiating these two hypotheses. It is then argued that the accumulative view reconciles seemingly incompatible perspectives on AI risks. The implications of differentiating between these causal pathways -- the decisive and the accumulative -- for the governance of AI risks as well as long-term AI safety are discussed.

相關內容

人工智能雜志AI(Artificial Intelligence)是目前公認的發表該領域最新研究成果的主要國際論壇。該期刊歡迎有關AI廣泛方面的論文,這些論文構成了整個領域的進步,也歡迎介紹人工智能應用的論文,但重點應該放在新的和新穎的人工智能方法如何提高應用領域的性能,而不是介紹傳統人工智能方法的另一個應用。關于應用的論文應該描述一個原則性的解決方案,強調其新穎性,并對正在開發的人工智能技術進行深入的評估。 官網地址:

In a recent study, Reinforcement Learning (RL) used in combination with many-objective search, has been shown to outperform alternative techniques (random search and many-objective search) for online testing of Deep Neural Network-enabled systems. The empirical evaluation of these techniques was conducted on a state-of-the-art Autonomous Driving System (ADS). This work is a replication and extension of that empirical study. Our replication shows that RL does not outperform pure random test generation in a comparison conducted under the same settings of the original study, but with no confounding factor coming from the way collisions are measured. Our extension aims at eliminating some of the possible reasons for the poor performance of RL observed in our replication: (1) the presence of reward components providing contrasting or useless feedback to the RL agent; (2) the usage of an RL algorithm (Q-learning) which requires discretization of an intrinsically continuous state space. Results show that our new RL agent is able to converge to an effective policy that outperforms random testing. Results also highlight other possible improvements, which open to further investigations on how to best leverage RL for online ADS testing.

We study the problem of counting answers to unions of conjunctive queries (UCQs) under structural restrictions on the input query. Concretely, given a class C of UCQs, the problem #UCQ(C) provides as input a UCQ Q in C and a database D and the problem is to compute the number of answers of Q in D. Chen and Mengel [PODS'16] have shown that for any recursively enumerable class C, the problem #UCQ(C) is either fixed-parameter tractable or hard for one of the parameterised complexity classes W[1] or #W[1]. However, their tractability criterion is unwieldy in the sense that, given any concrete class C of UCQs, it is not easy to determine how hard it is to count answers to queries in C. Moreover, given a single specific UCQ Q, it is not easy to determine how hard it is to count answers to Q. In this work, we address the question of finding a natural tractability criterion: The combined conjunctive query of a UCQ $\varphi_1 \vee \dots \vee \varphi_\ell$ is the conjunctive query $\varphi_1 \wedge \dots \wedge \varphi_\ell$. We show that under natural closure properties of C, the problem #UCQ(C) is fixed-parameter tractable if and only if the combined conjunctive queries of UCQs in C, and their contracts, have bounded treewidth. A contract of a conjunctive query is an augmented structure, taking into account how the quantified variables are connected to the free variables. If all variables are free, then a conjunctive query is equal to its contract; in this special case the criterion for fixed-parameter tractability of #UCQ(C) thus simplifies to the combined queries having bounded treewidth. Finally, we give evidence that a closure property on C is necessary for obtaining a natural tractability criterion: We show that even for a single UCQ Q, the meta problem of deciding whether #UCQ({Q}) can be solved in time $O(|D|^d)$ is NP-hard for any fixed $d\geq 1$.

Despite the progress of learning-based methods for 6D object pose estimation, the trade-off between accuracy and scalability for novel objects still exists. Specifically, previous methods for novel objects do not make good use of the target object's 3D shape information since they focus on generalization by processing the shape indirectly, making them less effective. We present GenFlow, an approach that enables both accuracy and generalization to novel objects with the guidance of the target object's shape. Our method predicts optical flow between the rendered image and the observed image and refines the 6D pose iteratively. It boosts the performance by a constraint of the 3D shape and the generalizable geometric knowledge learned from an end-to-end differentiable system. We further improve our model by designing a cascade network architecture to exploit the multi-scale correlations and coarse-to-fine refinement. GenFlow ranked first on the unseen object pose estimation benchmarks in both the RGB and RGB-D cases. It also achieves performance competitive with existing state-of-the-art methods for the seen object pose estimation without any fine-tuning.

Despite the success of Quantum Neural Networks (QNNs) in decision-making systems, their fairness remains unexplored, as the focus primarily lies on accuracy. This work conducts a design space exploration, unveiling QNN unfairness, and highlighting the significant influence of QNN deployment and quantum noise on accuracy and fairness. To effectively navigate the vast QNN deployment design space, we propose JustQ, a framework for deploying fair and accurate QNNs on NISQ computers. It includes a complete NISQ error model, reinforcement learning-based deployment, and a flexible optimization objective incorporating both fairness and accuracy. Experimental results show JustQ outperforms previous methods, achieving superior accuracy and fairness. This work pioneers fair QNN design on NISQ computers, paving the way for future investigations.

The resolution of the P vs. NP problem, a cornerstone in computational theory, remains elusive despite extensive exploration through mathematical logic and algorithmic theory. This paper takes a novel approach by integrating information theory, thermodynamics, and computational complexity, offering a comprehensive landscape of interdisciplinary study. We focus on entropy, a concept traditionally linked with uncertainty and disorder, and reinterpret it to assess the complexity of computational problems. Our research presents a structured framework for establishing entropy profiles within computational tasks, enabling a clear distinction between P and NP-classified problems. This framework quantifies the 'information cost' associated with these problem categories, highlighting their intrinsic computational complexity. We introduce Entropy-Driven Annealing (EDA) as a new method to decipher the energy landscapes of computational problems, focusing on the unique characteristics of NP problems. This method proposes a differential thermodynamic profile for NP problems in contrast to P problems and explores potential thermodynamic routes for finding polynomial-time solutions to NP challenges. Our introduction of EDA and its application to complex computational problems like the Boolean satisfiability problem (SAT) and protein-DNA complexes suggests a potential pathway toward unraveling the intricacies of the P vs. NP problem.

Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

北京阿比特科技有限公司