Deep learning (DL) has been successfully applied to encrypted network traffic classification in experimental settings. However, in production use, it has been shown that a DL classifier's performance inevitably decays over time. Re-training the model on newer datasets has been shown to only partially improve its performance. Manually re-tuning the model architecture to meet the performance expectations on newer datasets is time-consuming and requires domain expertise. We propose AutoML4ETC, a novel tool to automatically design efficient and high-performing neural architectures for encrypted traffic classification. We define a novel, powerful search space tailored specifically for the near real-time classification of encrypted traffic using packet header bytes. We show that with different search strategies over our search space, AutoML4ETC generates neural architectures that outperform the state-of-the-art encrypted traffic classifiers on several datasets, including public benchmark datasets and real-world TLS and QUIC traffic collected from the Orange mobile network. In addition to being more accurate, AutoML4ETC's architectures are significantly more efficient and lighter in terms of the number of parameters. Finally, we make AutoML4ETC publicly available for future research.
Model transparency, label correlation learning and the robust-ness to label noise are crucial for multilabel learning. However, few existing methods study these three characteristics simultaneously. To address this challenge, we propose the robust multilabel Takagi-Sugeno-Kang fuzzy system (R-MLTSK-FS) with three mechanisms. First, we design a soft label learning mechanism to reduce the effect of label noise by explicitly measuring the interactions between labels, which is also the basis of the other two mechanisms. Second, the rule-based TSK FS is used as the base model to efficiently model the inference relationship be-tween features and soft labels in a more transparent way than many existing multilabel models. Third, to further improve the performance of multilabel learning, we build a correlation enhancement learning mechanism based on the soft label space and the fuzzy feature space. Extensive experiments are conducted to demonstrate the superiority of the proposed method.
Deep autoencoders provide an effective tool for learning non-linear dimensionality reduction in an unsupervised way. Recently, they have been used for the task of anomaly detection in the visual domain. By optimizing for the reconstruction error using anomaly-free examples, the common belief is that a corresponding network should fail to accurately reconstruct anomalous regions in the application phase. This goal is typically addressed by controlling the capacity of the network, either by reducing the size of the bottleneck layer or by enforcing sparsity constraints on the activations. However, neither of these techniques does explicitly penalize reconstruction of anomalous signals often resulting in poor detection. We tackle this problem by adapting a self-supervised learning regime that allows the use of discriminative information during training but focuses on the data manifold of normal examples. We emphasize that inference with our approach is very efficient during training and prediction requiring a single forward pass for each input image. Our experiments on the MVTec AD dataset demonstrate high detection and localization performance. On the texture-subset, in particular, our approach consistently outperforms recent anomaly detection methods by a significant margin.
Self-supervised multi-object trackers have tremendous potential as they enable learning from raw domain-specific data. However, their re-identification accuracy still falls short compared to their supervised counterparts. We hypothesize that this drawback results from formulating self-supervised objectives that are limited to single frames or frame pairs. Such formulations do not capture sufficient visual appearance variations to facilitate learning consistent re-identification features for autonomous driving when the frame rate is low or object dynamics are high. In this work, we propose a training objective that enables self-supervised learning of re-identification features from multiple sequential frames by enforcing consistent association scores across short and long timescales. We perform extensive evaluations demonstrating that re-identification features trained from longer sequences significantly reduce ID switches on standard autonomous driving datasets compared to existing self-supervised learning methods, which are limited to training on frame pairs. Using our proposed SubCo loss function, we set the new state-of-the-art among self-supervised methods and even perform on par with fully supervised learning methods.
Deep learning methods for communications over unknown nonlinear channels have attracted considerable interest recently. In this paper, we consider semi-supervised learning methods, which are based on variational inference, for decoding unknown nonlinear channels. These methods, which include Monte Carlo expectation maximization and a variational autoencoder, make efficient use of few pilot symbols and the payload data. The best semi-supervised learning results are achieved with a variational autoencoder. For sufficiently many payload symbols, the variational autoencoder also has lower error rate compared to meta learning that uses the pilot data of the present as well as previous transmission blocks.
Transformer is a promising neural network learner, and has achieved great success in various machine learning tasks. Thanks to the recent prevalence of multimodal applications and big data, Transformer-based multimodal learning has become a hot topic in AI research. This paper presents a comprehensive survey of Transformer techniques oriented at multimodal data. The main contents of this survey include: (1) a background of multimodal learning, Transformer ecosystem, and the multimodal big data era, (2) a theoretical review of Vanilla Transformer, Vision Transformer, and multimodal Transformers, from a geometrically topological perspective, (3) a review of multimodal Transformer applications, via two important paradigms, i.e., for multimodal pretraining and for specific multimodal tasks, (4) a summary of the common challenges and designs shared by the multimodal Transformer models and applications, and (5) a discussion of open problems and potential research directions for the community.
Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.
Graph neural networks (GNNs) have been a hot spot of recent research and are widely utilized in diverse applications. However, with the use of huger data and deeper models, an urgent demand is unsurprisingly made to accelerate GNNs for more efficient execution. In this paper, we provide a comprehensive survey on acceleration methods for GNNs from an algorithmic perspective. We first present a new taxonomy to classify existing acceleration methods into five categories. Based on the classification, we systematically discuss these methods and highlight their correlations. Next, we provide comparisons from aspects of the efficiency and characteristics of these methods. Finally, we suggest some promising prospects for future research.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.
Current state-of-the-art semantic role labeling (SRL) uses a deep neural network with no explicit linguistic features. However, prior work has shown that gold syntax trees can dramatically improve SRL decoding, suggesting the possibility of increased accuracy from explicit modeling of syntax. In this work, we present linguistically-informed self-attention (LISA): a neural network model that combines multi-head self-attention with multi-task learning across dependency parsing, part-of-speech tagging, predicate detection and SRL. Unlike previous models which require significant pre-processing to prepare linguistic features, LISA can incorporate syntax using merely raw tokens as input, encoding the sequence only once to simultaneously perform parsing, predicate detection and role labeling for all predicates. Syntax is incorporated by training one attention head to attend to syntactic parents for each token. Moreover, if a high-quality syntactic parse is already available, it can be beneficially injected at test time without re-training our SRL model. In experiments on CoNLL-2005 SRL, LISA achieves new state-of-the-art performance for a model using predicted predicates and standard word embeddings, attaining 2.5 F1 absolute higher than the previous state-of-the-art on newswire and more than 3.5 F1 on out-of-domain data, nearly 10% reduction in error. On ConLL-2012 English SRL we also show an improvement of more than 2.5 F1. LISA also out-performs the state-of-the-art with contextually-encoded (ELMo) word representations, by nearly 1.0 F1 on news and more than 2.0 F1 on out-of-domain text.