亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tyler's and Maronna's M-estimators, as well as their regularized variants, are popular robust methods to estimate the scatter or covariance matrix of a multivariate distribution. In this work, we study the non-asymptotic behavior of these estimators, for data sampled from a distribution that satisfies one of the following properties: 1) independent sub-Gaussian entries, up to a linear transformation; 2) log-concave distributions; 3) distributions satisfying a convex concentration property. Our main contribution is the derivation of tight non-asymptotic concentration bounds of these M-estimators around a suitably scaled version of the data sample covariance matrix. Prior to our work, non-asymptotic bounds were derived only for Elliptical and Gaussian distributions. Our proof uses a variety of tools from non asymptotic random matrix theory and high dimensional geometry. Finally, we illustrate the utility of our results on two examples of practical interest: sparse covariance and sparse precision matrix estimation.

相關內容

We propose a differentiable nonlinear least squares framework to account for uncertainty in relative pose estimation from feature correspondences. Specifically, we introduce a symmetric version of the probabilistic normal epipolar constraint, and an approach to estimate the covariance of feature positions by differentiating through the camera pose estimation procedure. We evaluate our approach on synthetic, as well as the KITTI and EuRoC real-world datasets. On the synthetic dataset, we confirm that our learned covariances accurately approximate the true noise distribution. In real world experiments, we find that our approach consistently outperforms state-of-the-art non-probabilistic and probabilistic approaches, regardless of the feature extraction algorithm of choice.

Laplace approximation is a very useful tool in Bayesian inference and it claims a nearly Gaussian behavior of the posterior. \cite{SpLaplace2022} established some rather accurate finite sample results about the quality of Laplace approximation in terms of the so called effective dimension $p$ under the critical dimension constraint $p^{3} \ll n$. However, this condition can be too restrictive for many applications like error-in-operator problem or Deep Neuronal Networks. This paper addresses the question whether the dimensionality condition can be relaxed and the accuracy of approximation can be improved if the target of estimation is low dimensional while the nuisance parameter is high or infinite dimensional. Under mild conditions, the marginal posterior can be approximated by a Gaussian mixture and the accuracy of the approximation only depends on the target dimension. Under the condition $p^{2} \ll n$ or in some special situation like semi-orthogonality, the Gaussian mixture can be replaced by one Gaussian distribution leading to a classical Laplace result. The second result greatly benefits from the recent advances in Gaussian comparison from \cite{GNSUl2017}. The results are illustrated and specified for the case of error-in-operator model.

For certain materials science scenarios arising in rubber technology, one-dimensional moving boundary problems (MBPs) with kinetic boundary conditions are capable of unveiling the large-time behavior of the diffusants penetration front, giving a direct estimate on the service life of the material. In this paper, we propose a random walk algorithm able to lead to good numerical approximations of both the concentration profile and the location of the sharp front. Essentially, the proposed scheme decouples the target evolution system in two steps: (i) the ordinary differential equation corresponding to the evaluation of the speed of the moving boundary is solved via an explicit Euler method, and (ii) the associated diffusion problem is solved by a random walk method. To verify the correctness of our random walk algorithm we compare the resulting approximations to results based on a finite element approach with a controlled convergence rate. Our numerical experiments recover well penetration depth measurements of an experimental setup targeting dense rubbers.

Local search is a powerful heuristic in optimization and computer science, the complexity of which was studied in the white box and black box models. In the black box model, we are given a graph $G = (V,E)$ and oracle access to a function $f : V \to \mathbb{R}$. The local search problem is to find a vertex $v$ that is a local minimum, i.e. with $f(v) \leq f(u)$ for all $(u,v) \in E$, using as few queries as possible. The query complexity is well understood on the grid and the hypercube, but much less is known beyond. We show the query complexity of local search on $d$-regular expanders with constant degree is $\Omega\left(\frac{\sqrt{n}}{\log{n}}\right)$, where $n$ is the number of vertices. This matches within a logarithmic factor the upper bound of $O(\sqrt{n})$ for constant degree graphs from Aldous (1983), implying that steepest descent with a warm start is an essentially optimal algorithm for expanders. The best lower bound known from prior work was $\Omega\left(\frac{\sqrt[8]{n}}{\log{n}}\right)$, shown by Santha and Szegedy (2004) for quantum and randomized algorithms. We obtain this result by considering a broader framework of graph features such as vertex congestion and separation number. We show that for each graph, the randomized query complexity of local search is $\Omega\left(\frac{n^{1.5}}{g}\right)$, where $g$ is the vertex congestion of the graph; and $\Omega\left(\sqrt[4]{\frac{s}{\Delta}}\right)$, where $s$ is the separation number and $\Delta$ is the maximum degree. For separation number the previous bound was $\Omega\left(\sqrt[8]{\frac{s}{\Delta}} /\log{n}\right)$, given by Santha and Szegedy for quantum and randomized algorithms. We also show a variant of the relational adversary method from Aaronson (2006), which is asymptotically at least as strong as the version in Aaronson (2006) for all randomized algorithms and strictly stronger for some problems.

We derive the exact asymptotic distribution of the maximum likelihood estimator $(\hat{\alpha}_n, \hat{\theta}_n)$ of $(\alpha, \theta)$ for the Ewens--Pitman partition in the regime of $0<\alpha<1$ and $\theta>-\alpha$: we show that $\hat{\alpha}_n$ is $n^{\alpha/2}$-consistent and converges to a variance mixture of normal distributions, i.e., $\hat{\alpha}_n$ is asymptotically mixed normal, while $\hat{\theta}_n$ is not consistent and converges to a transformation of the generalized Mittag-Leffler distribution. As an application, we derive a confidence interval of $\alpha$ and propose a hypothesis testing of sparsity for network data. In our proof, we define an empirical measure induced by the Ewens--Pitman partition and prove a suitable convergence of the measure in some test functions, aiming to derive asymptotic behavior of the log likelihood.

Under some regularity assumptions, we report an a priori error analysis of a dG scheme for the Poisson and Stokes flow problem in their dual mixed formulation. Both formulations satisfy a Babu\v{s}ka-Brezzi type condition within the space H(div) x L2. It is well known that the lowest order Crouzeix-Raviart element paired with piecewise constants satisfies such a condition on (broken) H1 x L2 spaces. In the present article, we use this pair. The continuity of the normal component is weakly imposed by penalizing jumps of the broken H(div) component. For the resulting methods, we prove well-posedness and convergence with constants independent of data and mesh size. We report error estimates in the methods natural norms and optimal local error estimates for the divergence error. In fact, our finite element solution shares for each triangle one DOF with the CR interpolant and the divergence is locally the best-approximation for any regularity. Numerical experiments support the findings and suggest that the other errors converge optimally even for the lowest regularity solutions and a crack-problem, as long as the crack is resolved by the mesh.

Inspired by certain regularization techniques for linear inverse problems, in this work we investigate the convergence properties of the Levenberg-Marquardt method using singular scaling matrices. Under a completeness condition, we show that the method is well-defined and establish its local quadratic convergence under an error bound assumption. We also prove that the search directions are gradient-related allowing us to show that limit points of the sequence generated by a line-search version of the method are stationary for the sum-of-squares function. The usefulness of the method is illustrated with some examples of parameter identification in heat conduction problems for which specific singular scaling matrices can be used to improve the quality of approximate solutions.

We study the behavior of linear discriminant functions for binary classification in the infinite-imbalance limit, where the sample size of one class grows without bound while the sample size of the other remains fixed. The coefficients of the classifier minimize an empirical loss specified through a weight function. We show that for a broad class of weight functions, the intercept diverges but the rest of the coefficient vector has a finite almost sure limit under infinite imbalance, extending prior work on logistic regression. The limit depends on the left-tail growth rate of the weight function, for which we distinguish two cases: subexponential and exponential. The limiting coefficient vectors reflect robustness or conservatism properties in the sense that they optimize against certain worst-case alternatives. In the subexponential case, the limit is equivalent to an implicit choice of upsampling distribution for the minority class. We apply these ideas in a credit risk setting, with particular emphasis on performance in the high-sensitivity and high-specificity regions.

Originally introduced as a neural network for ensemble learning, mixture of experts (MoE) has recently become a fundamental building block of highly successful modern deep neural networks for heterogeneous data analysis in several applications, including those in machine learning, statistics, bioinformatics, economics, and medicine. Despite its popularity in practice, a satisfactory level of understanding of the convergence behavior of Gaussian-gated MoE parameter estimation is far from complete. The underlying reason for this challenge is the inclusion of covariates in the Gaussian gating and expert networks, which leads to their intrinsically complex interactions via partial differential equations with respect to their parameters. We address these issues by designing novel Voronoi loss functions to accurately capture heterogeneity in the maximum likelihood estimator (MLE) for resolving parameter estimation in these models. Our results reveal distinct behaviors of the MLE under two settings: the first setting is when all the location parameters in the Gaussian gating are non-zeros while the second setting is when there exists at least one zero-valued location parameter. Notably, these behaviors can be characterized by the solvability of two different systems of polynomial equations. Finally, we conduct a simulation study to verify our theoretical results.

Several kernel based testing procedures are proposed to solve the problem of model selection in the presence of parameter estimation in a family of candidate models. Extending the two sample test of Gretton et al. (2006), we first provide a way of testing whether some data is drawn from a given parametric model (model specification). Second, we provide a test statistic to decide whether two parametric models are equally valid to describe some data (model comparison), in the spirit of Vuong (1989). All our tests are asymptotically standard normal under the null, even when the true underlying distribution belongs to the competing parametric families.Some simulations illustrate the performance of our tests in terms of power and level.

北京阿比特科技有限公司