亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion models with large-scale pre-training have achieved significant success in the field of visual content generation, particularly exemplified by Diffusion Transformers (DiT). However, DiT models have faced challenges with scalability and quadratic complexity efficiency. In this paper, we aim to leverage the long sequence modeling capability of Gated Linear Attention (GLA) Transformers, expanding its applicability to diffusion models. We introduce Diffusion Gated Linear Attention Transformers (DiG), a simple, adoptable solution with minimal parameter overhead, following the DiT design, but offering superior efficiency and effectiveness. In addition to better performance than DiT, DiG-S/2 exhibits $2.5\times$ higher training speed than DiT-S/2 and saves $75.7\%$ GPU memory at a resolution of $1792 \times 1792$. Moreover, we analyze the scalability of DiG across a variety of computational complexity. DiG models, with increased depth/width or augmentation of input tokens, consistently exhibit decreasing FID. We further compare DiG with other subquadratic-time diffusion models. With the same model size, DiG-XL/2 is $4.2\times$ faster than the recent Mamba-based diffusion model at a $1024$ resolution, and is $1.8\times$ faster than DiT with CUDA-optimized FlashAttention-2 under the $2048$ resolution. All these results demonstrate its superior efficiency among the latest diffusion models. Code is released at //github.com/hustvl/DiG.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performance · 代價 · 查準率/準確率 · MoDELS ·
2024 年 7 月 9 日

In domain-specific applications, GPT-4, augmented with precise prompts or Retrieval-Augmented Generation (RAG), shows notable potential but faces the critical tri-lemma of performance, cost, and data privacy. High performance requires sophisticated processing techniques, yet managing multiple agents within a complex workflow often proves costly and challenging. To address this, we introduce the PEER (Plan, Execute, Express, Review) multi-agent framework. This systematizes domain-specific tasks by integrating precise question decomposition, advanced information retrieval, comprehensive summarization, and rigorous self-assessment. Given the concerns of cost and data privacy, enterprises are shifting from proprietary models like GPT-4 to custom models, striking a balance between cost, security, and performance. We developed industrial practices leveraging online data and user feedback for efficient model tuning. This study provides best practice guidelines for applying multi-agent systems in domain-specific problem-solving and implementing effective agent tuning strategies. Our empirical studies, particularly in the financial question-answering domain, demonstrate that our approach achieves 95.0% of GPT-4's performance, while effectively managing costs and ensuring data privacy.

Video-to-audio (V2A) generation aims to synthesize content-matching audio from silent video, and it remains challenging to build V2A models with high generation quality, efficiency, and visual-audio temporal synchrony. We propose Frieren, a V2A model based on rectified flow matching. Frieren regresses the conditional transport vector field from noise to spectrogram latent with straight paths and conducts sampling by solving ODE, outperforming autoregressive and score-based models in terms of audio quality. By employing a non-autoregressive vector field estimator based on a feed-forward transformer and channel-level cross-modal feature fusion with strong temporal alignment, our model generates audio that is highly synchronized with the input video. Furthermore, through reflow and one-step distillation with guided vector field, our model can generate decent audio in a few, or even only one sampling step. Experiments indicate that Frieren achieves state-of-the-art performance in both generation quality and temporal alignment on VGGSound, with alignment accuracy reaching 97.22%, and 6.2% improvement in inception score over the strong diffusion-based baseline. Audio samples are available at //frieren-v2a.github.io .

Text-to-image diffusion models have significantly advanced in conditional image generation. However, these models usually struggle with accurately rendering images featuring humans, resulting in distorted limbs and other anomalies. This issue primarily stems from the insufficient recognition and evaluation of limb qualities in diffusion models. To address this issue, we introduce AbHuman, the first large-scale synthesized human benchmark focusing on anatomical anomalies. This benchmark consists of 56K synthesized human images, each annotated with detailed, bounding-box level labels identifying 147K human anomalies in 18 different categories. Based on this, the recognition of human anomalies can be established, which in turn enhances image generation through traditional techniques such as negative prompting and guidance. To further boost the improvement, we propose HumanRefiner, a novel plug-and-play approach for the coarse-to-fine refinement of human anomalies in text-to-image generation. Specifically, HumanRefiner utilizes a self-diagnostic procedure to detect and correct issues related to both coarse-grained abnormal human poses and fine-grained anomaly levels, facilitating pose-reversible diffusion generation. Experimental results on the AbHuman benchmark demonstrate that HumanRefiner significantly reduces generative discrepancies, achieving a 2.9x improvement in limb quality compared to the state-of-the-art open-source generator SDXL and a 1.4x improvement over DALL-E 3 in human evaluations. Our data and code are available at //github.com/Enderfga/HumanRefiner.

Recent advances in 3D AIGC have shown promise in directly creating 3D objects from text and images, offering significant cost savings in animation and product design. However, detailed edit and customization of 3D assets remains a long-standing challenge. Specifically, 3D Generation methods lack the ability to follow finely detailed instructions as precisely as their 2D image creation counterparts. Imagine you can get a toy through 3D AIGC but with undesired accessories and dressing. To tackle this challenge, we propose a novel pipeline called Tailor3D, which swiftly creates customized 3D assets from editable dual-side images. We aim to emulate a tailor's ability to locally change objects or perform overall style transfer. Unlike creating 3D assets from multiple views, using dual-side images eliminates conflicts on overlapping areas that occur when editing individual views. Specifically, it begins by editing the front view, then generates the back view of the object through multi-view diffusion. Afterward, it proceeds to edit the back views. Finally, a Dual-sided LRM is proposed to seamlessly stitch together the front and back 3D features, akin to a tailor sewing together the front and back of a garment. The Dual-sided LRM rectifies imperfect consistencies between the front and back views, enhancing editing capabilities and reducing memory burdens while seamlessly integrating them into a unified 3D representation with the LoRA Triplane Transformer. Experimental results demonstrate Tailor3D's effectiveness across various 3D generation and editing tasks, including 3D generative fill and style transfer. It provides a user-friendly, efficient solution for editing 3D assets, with each editing step taking only seconds to complete.

With the exponential increase in video content, the need for accurate deception detection in human-centric video analysis has become paramount. This research focuses on the extraction and combination of various features to enhance the accuracy of deception detection models. By systematically extracting features from visual, audio, and text data, and experimenting with different combinations, we developed a robust model that achieved an impressive 99% accuracy. Our methodology emphasizes the significance of feature engineering in deception detection, providing a clear and interpretable framework. We trained various machine learning models, including LSTM, BiLSTM, and pre-trained CNNs, using both single and multi-modal approaches. The results demonstrated that combining multiple modalities significantly enhances detection performance compared to single modality training. This study highlights the potential of strategic feature extraction and combination in developing reliable and transparent automated deception detection systems in video analysis, paving the way for more advanced and accurate detection methodologies in future research.

Combining the predictions of multiple trained models through ensembling is generally a good way to improve accuracy by leveraging the different learned features of the models, however it comes with high computational and storage costs. Model fusion, the act of merging multiple models into one by combining their parameters reduces these costs but doesn't work as well in practice. Indeed, neural network loss landscapes are high-dimensional and non-convex and the minima found through learning are typically separated by high loss barriers. Numerous recent works have been focused on finding permutations matching one network features to the features of a second one, lowering the loss barrier on the linear path between them in parameter space. However, permutations are restrictive since they assume a one-to-one mapping between the different models' neurons exists. We propose a new model merging algorithm, CCA Merge, which is based on Canonical Correlation Analysis and aims to maximize the correlations between linear combinations of the model features. We show that our alignment method leads to better performances than past methods when averaging models trained on the same, or differing data splits. We also extend this analysis into the harder setting where more than 2 models are merged, and we find that CCA Merge works significantly better than past methods. Our code is publicly available at //github.com/shoroi/align-n-merge

Diffusion models have shown impressive performance in many domains, including image generation, time series prediction, and reinforcement learning. The algorithm demonstrates superior performance over the traditional GAN and transformer-based methods. However, the model's capability to follow natural language instructions (e.g., spatial relationships between objects, generating complex scenes) is still unsatisfactory. It has been an important research area to enhance such capability. Prior works have shown that using Reinforcement Learning can effectively train diffusion models to enhance fidelity on specific objectives. However, existing RL methods require collecting a large amount of data to train an effective reward model. They also don't receive feedback when the generated image is incorrect. In this work, we propose Iterative Prompt Relabeling (IPR), a novel algorithm that aligns images to text through iterative image sampling and prompt relabeling. IPR first samples a batch of images conditioned on the text then relabels the text prompts of unmatched text-image pairs with classifier feedback. We conduct thorough experiments on SDv2 and SDXL, testing their capability to follow instructions on spatial relations. With IPR, we improved up to 15.22% (absolute improvement) on the challenging spatial relation VISOR benchmark, demonstrating superior performance compared to previous RL methods.

This work explores class-incremental learning (CIL) for sound event detection (SED), advancing adaptability towards real-world scenarios. CIL's success in domains like computer vision inspired our SED-tailored method, addressing the unique challenges of diverse and complex audio environments. Our approach employs an independent unsupervised learning framework with a distillation loss function to integrate new sound classes while preserving the SED model consistency across incremental tasks. We further enhance this framework with a sample selection strategy for unlabeled data and a balanced exemplar update mechanism, ensuring varied and illustrative sound representations. Evaluating various continual learning methods on the DCASE 2023 Task 4 dataset, we find that our research offers insights into each method's applicability for real-world SED systems that can have newly added sound classes. The findings also delineate future directions of CIL in dynamic audio settings.

The rapid adoption of machine learning (ML) has underscored the importance of serving ML models with high throughput and resource efficiency. Traditional approaches to managing increasing query demands have predominantly focused on hardware scaling, which involves increasing server count or computing power. However, this strategy can often be impractical due to limitations in the available budget or compute resources. As an alternative, accuracy scaling offers a promising solution by adjusting the accuracy of ML models to accommodate fluctuating query demands. Yet, existing accuracy scaling techniques target independent ML models and tend to underperform while managing inference pipelines. Furthermore, they lack integration with hardware scaling, leading to potential resource inefficiencies during low-demand periods. To address the limitations, this paper introduces Loki, a system designed for serving inference pipelines effectively with both hardware and accuracy scaling. Loki incorporates an innovative theoretical framework for optimal resource allocation and an effective query routing algorithm, aimed at improving system accuracy and minimizing latency deadline violations. Our empirical evaluation demonstrates that through accuracy scaling, the effective capacity of a fixed-size cluster can be enhanced by more than $2.7\times$ compared to relying solely on hardware scaling. When compared with state-of-the-art inference-serving systems, Loki achieves up to a $10\times$ reduction in Service Level Objective (SLO) violations, with minimal compromises on accuracy and while fulfilling throughput demands.

In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at \url{//github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models}.

北京阿比特科技有限公司