亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We grapple with the question: How, for whom and why should explainable artificial intelligence (XAI) aim to support the user goal of agency? In particular, we analyze the relationship between agency and explanations through a user-centric lens through case studies and thought experiments. We find that explanation serves as one of several possible first steps for agency by allowing the user convert forethought to outcome in a more effective manner in future interactions. Also, we observe that XAI systems might better cater to laypersons, particularly "tinkerers", when combining explanations and user control, so they can make meaningful changes.

相關內容

Artificial intelligence models and methods commonly lack causal interpretability. Despite the advancements in interpretable machine learning (IML) methods, they frequently assign importance to features which lack causal influence on the outcome variable. Selecting causally relevant features among those identified as relevant by these methods, or even before model training, would offer a solution. Feature selection methods utilizing information theoretical quantities have been successful in identifying statistically relevant features. However, the information theoretical quantities they are based on do not incorporate causality, rendering them unsuitable for such scenarios. To address this challenge, this article proposes information theoretical quantities that incorporate the causal structure of the system, which can be used to evaluate causal importance of features for some given outcome variable. Specifically, we introduce causal versions of entropy and mutual information, termed causal entropy and causal information gain, which are designed to assess how much control a feature provides over the outcome variable. These newly defined quantities capture changes in the entropy of a variable resulting from interventions on other variables. Fundamental results connecting these quantities to the existence of causal effects are derived. The use of causal information gain in feature selection is demonstrated, highlighting its superiority over standard mutual information in revealing which features provide control over a chosen outcome variable. Our investigation paves the way for the development of methods with improved interpretability in domains involving causation.

We use Markov categories to develop generalizations of the theory of Markov chains and hidden Markov models in an abstract setting. This comprises characterizations of hidden Markov models in terms of local and global conditional independences as well as existing algorithms for Bayesian filtering and smoothing applicable in all Markov categories with conditionals. We show that these algorithms specialize to existing ones such as the Kalman filter, forward-backward algorithm, and the Rauch-Tung-Striebel smoother when instantiated in appropriate Markov categories. Under slightly stronger assumptions, we also prove that the sequence of outputs of the Bayes filter is itself a Markov chain with a concrete formula for its transition maps. There are two main features of this categorical framework. The first is its generality, as it can be used in any Markov category with conditionals. In particular, it provides a systematic unified account of hidden Markov models and algorithms for filtering and smoothing in discrete probability, Gaussian probability, measure-theoretic probability, possibilistic nondeterminism and others at the same time. The second feature is the intuitive visual representation of information flow in these algorithms in terms of string diagrams.

Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: //github.com/Ravoxsg/efficient_unified_crs.

Recommendation systems aim to provide users with relevant suggestions, but often lack interpretability and fail to capture higher-level semantic relationships between user behaviors and profiles. In this paper, we propose a novel approach that leverages large language models (LLMs) to construct personalized reasoning graphs. These graphs link a user's profile and behavioral sequences through causal and logical inferences, representing the user's interests in an interpretable way. Our approach, LLM reasoning graphs (LLMRG), has four components: chained graph reasoning, divergent extension, self-verification and scoring, and knowledge base self-improvement. The resulting reasoning graph is encoded using graph neural networks, which serves as additional input to improve conventional recommender systems, without requiring extra user or item information. Our approach demonstrates how LLMs can enable more logical and interpretable recommender systems through personalized reasoning graphs. LLMRG allows recommendations to benefit from both engineered recommendation systems and LLM-derived reasoning graphs. We demonstrate the effectiveness of LLMRG on benchmarks and real-world scenarios in enhancing base recommendation models.

The ever-increasing demand for data services and the proliferation of user equipment (UE) have resulted in a significant rise in the volume of mobile traffic. Moreover, in multi-band networks, non-uniform traffic distribution among different operational bands can lead to congestion, which can adversely impact the user's quality of experience. Load balancing is a critical aspect of network optimization, where it ensures that the traffic is evenly distributed among different bands, avoiding congestion and ensuring better user experience. Traditional load balancing approaches rely only on the band channel quality as a load indicator and to move UEs between bands, which disregards the UE's demands and the band resource, and hence, leading to a suboptimal balancing and utilization of resources. To address this challenge, we propose an event-based algorithm, in which we model the load balancing problem as a multi-objective stochastic optimization, and assign UEs to bands in a probabilistic manner. The goal is to evenly distribute traffic across available bands according to their resources, while maintaining minimal number of inter-frequency handovers to avoid the signaling overhead and the interruption time. Simulation results show that the proposed algorithm enhances the network's performance and outperforms traditional load balancing approaches in terms of throughput and interruption time.

Biped robots usually adopt feet with a rigid structure that simplifies walking on flat grounds and yet hinders ground adaptation in unstructured environments, thus jeopardizing stability. We recently explored in the SoftFoot the idea of adapting a robotic foot to ground irregularities along the sagittal plane. Building on the previous results, we propose in this paper a novel robotic foot able to adapt both in the sagittal and frontal planes, similarly to the human foot. It features five parallel modules with intrinsic longitudinal adaptability that can be combined in many possible designs through optional rigid or elastic connections. By following a methodological design approach, we narrow down the design space to five candidate foot designs and implement them on a modular system. Prototypes are tested experimentally via controlled application of force, through a robotic arm, onto a sensorized plate endowed with different obstacles. Their performance is compared, using also a rigid foot and the previous SoftFoot as a baseline. Analysis of footprint stability shows that the introduction of the transverse arch, by elastically connecting the five parallel modules, is advantageous for obstacle negotiation, especially when obstacles are located under the forefoot. In addition to biped robots' locomotion, this finding might also benefit lower-limb prostheses design.

Adversarial examples are one critical security threat to various visual applications, where injected human-imperceptible perturbations can confuse the output.Generating transferable adversarial examples in the black-box setting is crucial but challenging in practice. Existing input-diversity-based methods adopt different image transformations, but may be inefficient due to insufficient input diversity and an identical perturbation step size. Motivated by the fact that different image regions have distinctive weights in classification, this paper proposes a black-box adversarial generative framework by jointly designing enhanced input diversity and adaptive step sizes. We design local mixup to randomly mix a group of transformed adversarial images, strengthening the input diversity. For precise adversarial generation, we project the perturbation into the $tanh$ space to relax the boundary constraint. Moreover, the step sizes of different regions can be dynamically adjusted by integrating a second-order momentum.Extensive experiments on ImageNet validate that our framework can achieve superior transferability compared to state-of-the-art baselines.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司