Local search is an effective method for solving large-scale combinatorial optimization problems, and it has made remarkable progress in recent years through several subtle mechanisms. In this paper, we found two ways to improve the local search algorithms in solving Pseudo-Boolean Optimization (PBO): Firstly, some of those mechanisms such as unit propagation are merely used in solving MaxSAT before, which can be generalized to solve PBO as well; Secondly, the existing local search algorithms utilize the heuristic on variables, so-called score, to mainly guide the search. We attempt to gain more insights into the clause, as it plays the role of a middleman who builds a bridge between variables and the given formula. Hence, we first extended the combination of unit propagation-based decimation algorithm to PBO problem, giving a further generalized definition of unit clause for PBO problem, and apply it to the existing solver LS-PBO for constructing an initial assignment; then, we introduced a new heuristic on clauses, dubbed care, to set a higher priority for the clauses that are less satisfied in current iterations. Experiments on benchmarks from the most recent PB Competition, as well as three real-world application benchmarks including minimum-width confidence band, wireless sensor network optimization, and seating arrangement problems show that our algorithm DeciLS-PBO has a promising performance compared to the state-of-the-art algorithms.
Anomaly detection techniques enable effective anomaly detection and diagnosis in multi-variate time series data, which are of major significance for today's industrial applications. However, establishing an anomaly detection system that can be rapidly and accurately located is a challenging problem due to the lack of outlier tags, the high dimensional complexity of the data, memory bottlenecks in the actual hardware, and the need for fast reasoning. We have proposed an anomaly detection and diagnosis model -- DTAAD in this paper, based on Transformer, and Dual Temporal Convolutional Network(TCN). Our overall model will be an integrated design in which autoregressive model(AR) combines autoencoder(AE) structures, and scaling methods and feedback mechanisms are introduced to improve prediction accuracy and expand correlation differences. Constructed by us, the Dual TCN-Attention Network (DTA) only uses a single layer of Transformer encoder in our baseline experiment, that belongs to an ultra-lightweight model. Our extensive experiments on six publicly datasets validate that DTAAD exceeds current most advanced baseline methods in both detection and diagnostic performance. Specifically, DTAAD improved F1 scores by $8.38\%$, and reduced training time by $99\%$ compared to baseline. The code and training scripts are publicly on GitHub at //github.com/Yu-Lingrui/DTAAD.
Automation of High-Level Context (HLC) reasoning for intelligent systems at scale is imperative due to the unceasing accumulation of contextual data in the IoT era, the trend of the fusion of data from multi-sources, and the intrinsic complexity and dynamism of the context-based decision-making process. To mitigate this issue, we propose an automatic context reasoning framework CSM-H-R, which programmatically combines ontologies and states at runtime and the model-storage phase for attaining the ability to recognize meaningful HLC, and the resulting data representation can be applied to different reasoning techniques. Case studies are developed based on an intelligent elevator system in a smart campus setting. An implementation of the framework - a CSM Engine, and the experiments of translating the HLC reasoning into vector and matrix computing especially take care of the dynamic aspects of context and present the potentiality of using advanced mathematical and probabilistic models to achieve the next level of automation in integrating intelligent systems; meanwhile, privacy protection support is achieved by anonymization through label embedding and reducing information correlation. The code of this study is available at: //github.com/songhui01/CSM-H-R.
Integration against, and hence sampling from, high-dimensional probability distributions is of essential importance in many application areas and has been an active research area for decades. One approach that has drawn increasing attention in recent years has been the generation of samples from a target distribution $\mathbb{P}_{\mathrm{tar}}$ using transport maps: if $\mathbb{P}_{\mathrm{tar}} = T_\# \mathbb{P}_{\mathrm{ref}}$ is the pushforward of an easily-sampled probability distribution $\mathbb{P}_{\mathrm{ref}}$ under the transport map $T$, then the application of $T$ to $\mathbb{P}_{\mathrm{ref}}$-distributed samples yields $\mathbb{P}_{\mathrm{tar}}$-distributed samples. This paper proposes the application of transport maps not just to random samples, but also to quasi-Monte Carlo points, higher-order nets, and sparse grids in order for the transformed samples to inherit the original convergence rates that are often better than $N^{-1/2}$, $N$ being the number of samples/quadrature nodes. Our main result is the derivation of an explicit transport map for the case that $\mathbb{P}_{\mathrm{tar}}$ is a mixture of simple distributions, e.g.\ a Gaussian mixture, in which case application of the transport map $T$ requires the solution of an \emph{explicit} ODE with \emph{closed-form} right-hand side. Mixture distributions are of particular applicability and interest since many methods proceed by first approximating $\mathbb{P}_{\mathrm{tar}}$ by a mixture and then sampling from that mixture (often using importance reweighting). Hence, this paper allows for the sampling step to provide a better convergence rate than $N^{-1/2}$ for all such methods.
Domain generalization (DG) is proposed to deal with the issue of domain shift, which occurs when statistical differences exist between source and target domains. However, most current methods do not account for a common realistic scenario where the source and target domains have different classes. To overcome this deficiency, open set domain generalization (OSDG) then emerges as a more practical setting to recognize unseen classes in unseen domains. An intuitive approach is to use multiple one-vs-all classifiers to define decision boundaries for each class and reject the outliers as unknown. However, the significant class imbalance between positive and negative samples often causes the boundaries biased towards positive ones, resulting in misclassification for known samples in the unseen target domain. In this paper, we propose a novel meta-learning-based framework called dualistic MEta-learning with joint DomaIn-Class matching (MEDIC), which considers gradient matching towards inter-domain and inter-class splits simultaneously to find a generalizable boundary balanced for all tasks. Experimental results demonstrate that MEDIC not only outperforms previous methods in open set scenarios, but also maintains competitive close set generalization ability at the same time. Our code is available at //github.com/zzwdx/MEDIC.
Uplift modeling is a collection of machine learning techniques for estimating causal effects of a treatment at the individual or subgroup levels. Over the last years, causality and uplift modeling have become key trends in personalization at online e-commerce platforms, enabling the selection of the best treatment for each user in order to maximize the target business metric. Uplift modeling can be particularly useful for personalized promotional campaigns, where the potential benefit caused by a promotion needs to be weighed against the potential costs. In this tutorial we will cover basic concepts of causality and introduce the audience to state-of-the-art techniques in uplift modeling. We will discuss the advantages and the limitations of different approaches and dive into the unique setup of constrained uplift modeling. Finally, we will present real-life applications and discuss challenges in implementing these models in production.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.