亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generative adversarial network (GAN)-based vocoders have been intensively studied because they can synthesize high-fidelity audio waveforms faster than real-time. However, it has been reported that most GANs fail to obtain the optimal projection for discriminating between real and fake data in the feature space. In the literature, it has been demonstrated that slicing adversarial network (SAN), an improved GAN training framework that can find the optimal projection, is effective in the image generation task. In this paper, we investigate the effectiveness of SAN in the vocoding task. For this purpose, we propose a scheme to modify least-squares GAN, which most GAN-based vocoders adopt, so that their loss functions satisfy the requirements of SAN. Through our experiments, we demonstrate that SAN can improve the performance of GAN-based vocoders, including BigVGAN, with small modifications. Our code is available at //github.com/sony/bigvsan.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In the field of class incremental learning (CIL), generative replay has become increasingly prominent as a method to mitigate the catastrophic forgetting, alongside the continuous improvements in generative models. However, its application in class incremental object detection (CIOD) has been significantly limited, primarily due to the complexities of scenes involving multiple labels. In this paper, we propose a novel approach called stable diffusion deep generative replay (SDDGR) for CIOD. Our method utilizes a diffusion-based generative model with pre-trained text-to-diffusion networks to generate realistic and diverse synthetic images. SDDGR incorporates an iterative refinement strategy to produce high-quality images encompassing old classes. Additionally, we adopt an L2 knowledge distillation technique to improve the retention of prior knowledge in synthetic images. Furthermore, our approach includes pseudo-labeling for old objects within new task images, preventing misclassification as background elements. Extensive experiments on the COCO 2017 dataset demonstrate that SDDGR significantly outperforms existing algorithms, achieving a new state-of-the-art in various CIOD scenarios. The source code will be made available to the public.

Graph Transformers (GTs) have significantly advanced the field of graph representation learning by overcoming the limitations of message-passing graph neural networks (GNNs) and demonstrating promising performance and expressive power. However, the quadratic complexity of self-attention mechanism in GTs has limited their scalability, and previous approaches to address this issue often suffer from expressiveness degradation or lack of versatility. To address this issue, we propose AnchorGT, a novel attention architecture for GTs with global receptive field and almost linear complexity, which serves as a flexible building block to improve the scalability of a wide range of GT models. Inspired by anchor-based GNNs, we employ structurally important $k$-dominating node set as anchors and design an attention mechanism that focuses on the relationship between individual nodes and anchors, while retaining the global receptive field for all nodes. With its intuitive design, AnchorGT can easily replace the attention module in various GT models with different network architectures and structural encodings, resulting in reduced computational overhead without sacrificing performance. In addition, we theoretically prove that AnchorGT attention can be strictly more expressive than Weisfeiler-Lehman test, showing its superiority in representing graph structures. Our experiments on three state-of-the-art GT models demonstrate that their AnchorGT variants can achieve better results while being faster and significantly more memory efficient.

Recent transformer-based architectures have shown impressive results in the field of image segmentation. Thanks to their flexibility, they obtain outstanding performance in multiple segmentation tasks, such as semantic and panoptic, under a single unified framework. To achieve such impressive performance, these architectures employ intensive operations and require substantial computational resources, which are often not available, especially on edge devices. To fill this gap, we propose Prototype-based Efficient MaskFormer (PEM), an efficient transformer-based architecture that can operate in multiple segmentation tasks. PEM proposes a novel prototype-based cross-attention which leverages the redundancy of visual features to restrict the computation and improve the efficiency without harming the performance. In addition, PEM introduces an efficient multi-scale feature pyramid network, capable of extracting features that have high semantic content in an efficient way, thanks to the combination of deformable convolutions and context-based self-modulation. We benchmark the proposed PEM architecture on two tasks, semantic and panoptic segmentation, evaluated on two different datasets, Cityscapes and ADE20K. PEM demonstrates outstanding performance on every task and dataset, outperforming task-specific architectures while being comparable and even better than computationally-expensive baselines.

In this work, we further develop the conformer-based metric generative adversarial network (CMGAN) model for speech enhancement (SE) in the time-frequency (TF) domain. This paper builds on our previous work but takes a more in-depth look by conducting extensive ablation studies on model inputs and architectural design choices. We rigorously tested the generalization ability of the model to unseen noise types and distortions. We have fortified our claims through DNS-MOS measurements and listening tests. Rather than focusing exclusively on the speech denoising task, we extend this work to address the dereverberation and super-resolution tasks. This necessitated exploring various architectural changes, specifically metric discriminator scores and masking techniques. It is essential to highlight that this is among the earliest works that attempted complex TF-domain super-resolution. Our findings show that CMGAN outperforms existing state-of-the-art methods in the three major speech enhancement tasks: denoising, dereverberation, and super-resolution. For example, in the denoising task using the Voice Bank+DEMAND dataset, CMGAN notably exceeded the performance of prior models, attaining a PESQ score of 3.41 and an SSNR of 11.10 dB. Audio samples and CMGAN implementations are available online.

Large Language Models (LLMs) have witnessed rapid growth in emerging challenges and capabilities of language understanding, generation, and reasoning. Despite their remarkable performance in natural language processing-based applications, LLMs are susceptible to undesirable and erratic behaviors, including hallucinations, unreliable reasoning, and the generation of harmful content. These flawed behaviors undermine trust in LLMs and pose significant hurdles to their adoption in real-world applications, such as legal assistance and medical diagnosis, where precision, reliability, and ethical considerations are paramount. These could also lead to user dissatisfaction, which is currently inadequately assessed and captured. Therefore, to effectively and transparently assess users' satisfaction and trust in their interactions with LLMs, we design and develop LLMChain, a decentralized blockchain-based reputation system that combines automatic evaluation with human feedback to assign contextual reputation scores that accurately reflect LLM's behavior. LLMChain not only helps users and entities identify the most trustworthy LLM for their specific needs, but also provides LLM developers with valuable information to refine and improve their models. To our knowledge, this is the first time that a blockchain-based distributed framework for sharing and evaluating LLMs has been introduced. Implemented using emerging tools, LLMChain is evaluated across two benchmark datasets, showcasing its effectiveness and scalability in assessing seven different LLMs.

The booming of Internet-of-Things (IoT) is expected to provide more intelligent and reliable communication services for higher network coverage, massive connectivity, and low-cost solutions for 6G services. However, frequent charging and battery replacement of these massive IoT devices brings a series of challenges. Zero energy devices, which rely on energy-harvesting technologies and can operate without battery replacement or charging, play a pivotal role in facilitating the massive use of IoT devices. In order to enable reliable communications of such low-power devices, Manchester-coded on-off keying (OOK) modulation and non-coherent detections are attractive techniques due to their energy efficiency, robustness in noisy environments, and simplicity in receiver design. Moreover, to extend their communication range, employing channel coding along with enhanced detection schemes is crucial. In this paper, a novel soft-decision decoder is designed for OOK-based low-power receivers to enhance their detection performance. In addition, exact closed-form expressions and two simplified approximations are derived for the log-likelihood ratio (LLR), an essential metric for soft decoding. Numerical results demonstrate the significant coverage gain achieved through soft decoding for convolutional code.

Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司