亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to the inability to receive signals from the Global Navigation Satellite System (GNSS) in extreme conditions, achieving accurate and robust navigation for Unmanned Aerial Vehicles (UAVs) is a challenging task. Recently emerged, vision-based navigation has been a promising and feasible alternative to GNSS-based navigation. However, existing vision-based techniques are inadequate in addressing flight deviation caused by environmental disturbances and inaccurate position predictions in practical settings. In this paper, we present a novel angle robustness navigation paradigm to deal with flight deviation in point-to-point navigation tasks. Additionally, we propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module to accurately predict direction angles for high-precision navigation. To evaluate the vision-based navigation methods, we collect a new dataset termed as UAV_AR368. Furthermore, we design the Simulation Flight Testing Instrument (SFTI) using Google Earth to simulate different flight environments, thereby reducing the expenses associated with real flight testing. Experiment results demonstrate that the proposed model outperforms the state-of-the-art by achieving improvements of 26.0% and 45.6% in the success rate of arrival under ideal and disturbed circumstances, respectively.

相關內容

Blood Glucose (BG) control involves keeping an individual's BG within a healthy range through extracorporeal insulin injections is an important task for people with type 1 diabetes. However,traditional patient self-management is cumbersome and risky. Recent research has been devoted to exploring individualized and automated BG control approaches, among which Deep Reinforcement Learning (DRL) shows potential as an emerging approach. In this paper, we use an exponential decay model of drug concentration to convert the formalization of the BG control problem, which takes into account the delay and prolongedness of drug effects, from a PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process) to a MDP, and we propose a novel multi-step DRL-based algorithm to solve the problem. The Prioritized Experience Replay (PER) sampling method is also used in it. Compared to single-step bootstrapped updates, multi-step learning is more efficient and reduces the influence from biasing targets. Our proposed method converges faster and achieves higher cumulative rewards compared to the benchmark in the same training environment, and improves the time-in-range (TIR), the percentage of time the patient's BG is within the target range, in the evaluation phase. Our work validates the effectiveness of multi-step reinforcement learning in BG control, which may help to explore the optimal glycemic control measure and improve the survival of diabetic patients.

Object counting typically uses 2D point annotations. The complexity of object shapes and the subjectivity of annotators may lead to annotation inconsistency, potentially confusing counting model training. Some sophisticated noise-resistance counting methods have been proposed to alleviate this issue. Differently, we aim to directly refine the initial point annotations before training counting models. For that, we propose the Shifted Autoencoders (SAE), which enhances annotation consistency. Specifically, SAE applies random shifts to initial point annotations and employs a UNet to restore them to their original positions. Similar to MAE reconstruction, the trained SAE captures general position knowledge and ignores specific manual offset noise. This allows to restore the initial point annotations to more general and thus consistent positions. Extensive experiments show that using such refined consistent annotations to train some advanced (including noise-resistance) object counting models steadily/significantly boosts their performances. Remarkably, the proposed SAE helps to set new records on nine datasets. We will make codes and refined point annotations available.

The predictions of Large Language Models (LLMs) on downstream tasks often improve significantly when including examples of the input--label relationship in the context. However, there is currently no consensus about how this in-context learning (ICL) ability of LLMs works. For example, while Xie et al. (2021) liken ICL to a general-purpose learning algorithm, Min et al. (2022) argue ICL does not even learn label relationships from in-context examples. In this paper, we provide novel insights into how ICL leverages label information, revealing both capabilities and limitations. To ensure we obtain a comprehensive picture of ICL behavior, we study probabilistic aspects of ICL predictions and thoroughly examine the dynamics of ICL as more examples are provided. Our experiments show that ICL predictions almost always depend on in-context labels and that ICL can learn truly novel tasks in-context. However, we also find that ICL struggles to fully overcome prediction preferences acquired from pre-training data and, further, that ICL does not consider all in-context information equally.

Humans possess a remarkable ability to react to unpredictable perturbations through immediate mechanical responses, which harness the visco-elastic properties of muscles to maintain balance. Inspired by this behaviour, we propose a novel design of a robotic leg utilising fibre jammed structures as passive compliant mechanisms to achieve variable joint stiffness and damping. We developed multi-material fibre jammed tendons with tunable mechanical properties, which can be 3D printed in one-go without need for assembly. Through extensive numerical simulations and experimentation, we demonstrate the usefulness of these tendons for shock absorbance and maintaining joint stability. We investigate how they could be used effectively in a multi-joint robotic leg by evaluating the relative contribution of each tendon to the overall stiffness of the leg. Further, we showcase the potential of these jammed structures for legged locomotion, highlighting how morphological properties of the tendons can be used to enhance stability in robotic legs.

Conventional text-to-SQL parsers are not good at synthesizing complex SQL queries that involve multiple tables or columns, due to the challenges inherent in identifying the correct schema items and performing accurate alignment between question and schema items. To address the above issue, we present a schema-aware multi-task learning framework (named MTSQL) for complicated SQL queries. Specifically, we design a schema linking discriminator module to distinguish the valid question-schema linkings, which explicitly instructs the encoder by distinctive linking relations to enhance the alignment quality. On the decoder side, we define 6-type relationships to describe the connections between tables and columns (e.g., WHERE_TC), and introduce an operator-centric triple extractor to recognize those associated schema items with the predefined relationship. Also, we establish a rule set of grammar constraints via the predicted triples to filter the proper SQL operators and schema items during the SQL generation. On Spider, a cross-domain challenging text-to-SQL benchmark, experimental results indicate that MTSQL is more effective than baselines, especially in extremely hard scenarios. Moreover, further analyses verify that our approach leads to promising improvements for complicated SQL queries.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司