亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Though quasi-Newton methods have been extensively studied in the literature, they either suffer from local convergence or use a series of line searches for global convergence which is not acceptable in the distributed setting. In this work, we first propose a line search free greedy quasi-Newton (GQN) method with adaptive steps and establish explicit non-asymptotic bounds for both the global convergence rate and local superlinear rate. Our novel idea lies in the design of multiple greedy quasi-Newton updates, which involves computing Hessian-vector products, to control the Hessian approximation error, and a simple mechanism to adjust stepsizes to ensure the objective function improvement per iterate. Then, we extend it to the master-worker framework and propose a distributed adaptive GQN method whose communication cost is comparable with that of first-order methods, yet it retains the superb convergence property of its centralized counterpart. Finally, we demonstrate the advantages of our methods via numerical experiments.

相關內容

擬牛頓法(Quasi-Newton Methods)是求解非線性優化問題最有效的方法之一,于20世紀50年代由美國Argonne國家實驗室的物理學家W. C. Davidon所提出來。Davidon設計的這種算法在當時看來是非線性優化領域最具創造性的發明之一。不久R. Fletcher和M. J. D. Powell證實了這種新的算法遠比其他方法快速和可靠,使得非線性優化這門學科在一夜之間突飛猛進。

With the rapid development of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) has become a predominant method in the field of professional knowledge-based question answering. Presently, major foundation model companies have opened up Embedding and Chat API interfaces, and frameworks like LangChain have already integrated the RAG process. It appears that the key models and steps in RAG have been resolved, leading to the question: are professional knowledge QA systems now approaching perfection? This article discovers that current primary methods depend on the premise of accessing high-quality text corpora. However, since professional documents are mainly stored in PDFs, the low accuracy of PDF parsing significantly impacts the effectiveness of professional knowledge-based QA. We conducted an empirical RAG experiment across hundreds of questions from the corresponding real-world professional documents. The results show that, ChatDOC, a RAG system equipped with a panoptic and pinpoint PDF parser, retrieves more accurate and complete segments, and thus better answers. Empirical experiments show that ChatDOC is superior to baseline on nearly 47% of questions, ties for 38% of cases, and falls short on only 15% of cases. It shows that we may revolutionize RAG with enhanced PDF structure recognition.

After discovering that Language Models (LMs) can be good in-context few-shot learners, numerous strategies have been proposed to optimize in-context sequence configurations. Recently, researchers in Vision-Language (VL) domains also develop their few-shot learners, while they only use the simplest way, ie., randomly sampling, to configure in-context image-text pairs. In order to explore the effects of varying configurations on VL in-context learning, we devised four strategies for image selection and four for caption assignment to configure in-context image-text pairs for image captioning. Here Image Captioning is used as the case study since it can be seen as the visually-conditioned LM. Our comprehensive experiments yield two counter-intuitive but valuable insights, highlighting the distinct characteristics of VL in-context learning due to multi-modal synergy, as compared to the NLP case. Furthermore, in our exploration of optimal combination strategies, we observed an average performance enhancement of 20.9 of CIDEr scores compared to the baseline. The code is given in //github.com/yongliang-wu/ExploreCfg.

Recently a new class of nonlinearly partitioned Runge-Kutta (NPRK) methods was proposed for nonlinearly partitioned systems of ordinary differential equations, $y' = F(y,y)$. The target class of problems are ones in which different scales, stiffnesses, or physics are coupled in a nonlinear way, wherein the desired partition cannot be written in a classical additive or component-wise fashion. Here we use rooted-tree analysis to derive full order conditions for NPRK$_M$ methods, where $M$ denotes the number of nonlinear partitions. Due to the nonlinear coupling and thereby mixed product differentials, it turns out the standard node-colored rooted-tree analysis used in analyzing ODE integrators does not naturally apply. Instead we develop a new edge-colored rooted-tree framework to address the nonlinear coupling. The resulting order conditions are enumerated, provided directly for up to 4th order with $M=2$ and 3rd-order with $M=3$, and related to existing order conditions of additive and partitioned RK methods.

Memory bandwidth is known to be a performance bottleneck for FPGA accelerators, especially when they deal with large multi-dimensional data-sets. A large body of work focuses on reducing of off-chip transfers, but few authors try to improve the efficiency of transfers. This paper addresses the later issue by proposing (i) a compiler-based approach to accelerator's data layout to maximize contiguous access to off-chip memory, and (ii) data packing and runtime compression techniques that take advantage of this layout to further improve memory performance. We show that our approach can decrease the I/O cycles up to $7\times$ compared to un-optimized memory accesses.

Despite the frequent challenges posed by ambiguity when representing meaning via natural language, it is often ignored or deliberately removed in tasks mapping language to formally-designed representations, which generally assume a one-to-one mapping between linguistic and formal representations. We attempt to address this shortcoming by introducing AmP, a framework, dataset, and challenge for translating ambiguous natural language to formal representations like logic and code. We define templates and generate data for five well-documented linguistic ambiguities. Using AmP, we investigate how several few-shot text-to-code systems handle ambiguity, introducing three new metrics. We find that large pre-trained models perform poorly at capturing the distribution of possible meanings without deliberate instruction. However, models are able to capture the distribution well when ambiguity is attested in their inputs. These results motivate a call for including ambiguity explicitly in datasets and promote considering the distribution of possible outputs when evaluating systems. Data and code: //github.com/esteng/ambiguous_parsing

Panoptic Scene Graph Generation (PSG) parses objects and predicts their relationships (predicate) to connect human language and visual scenes. However, different language preferences of annotators and semantic overlaps between predicates lead to biased predicate annotations in the dataset, i.e. different predicates for same object pairs. Biased predicate annotations make PSG models struggle in constructing a clear decision plane among predicates, which greatly hinders the real application of PSG models. To address the intrinsic bias above, we propose a novel framework named ADTrans to adaptively transfer biased predicate annotations to informative and unified ones. To promise consistency and accuracy during the transfer process, we propose to measure the invariance of representations in each predicate class, and learn unbiased prototypes of predicates with different intensities. Meanwhile, we continuously measure the distribution changes between each presentation and its prototype, and constantly screen potential biased data. Finally, with the unbiased predicate-prototype representation embedding space, biased annotations are easily identified. Experiments show that ADTrans significantly improves the performance of benchmark models, achieving a new state-of-the-art performance, and shows great generalization and effectiveness on multiple datasets.

We make use of an entropic property to establish a convergence theorem (Main Theorem), which reveals that the conditional entropy measures the asymptotic Gaussianity. As an application, we establish the {\it entropic conditional central limit theorem} (CCLT), which is stronger than the classical CCLT. As another application, we show that continuous input under iterated Hadamard transform, almost every distribution of the output conditional on the values of the previous signals will tend to Gaussian, and the conditional distribution is in fact insensitive to the condition. The results enable us to make a theoretic study concerning Hadamard compression, which provides a solid theoretical analysis supporting the simulation results in previous literature. We show also that the conditional Fisher information can be used to measure the asymptotic Gaussianity.

Large language models (LLMs) are shown to benefit from chain-of-thought (COT) prompting, particularly when tackling tasks that require systematic reasoning processes. On the other hand, COT prompting also poses new vulnerabilities in the form of backdoor attacks, wherein the model will output unintended malicious content under specific backdoor-triggered conditions during inference. Traditional methods for launching backdoor attacks involve either contaminating the training dataset with backdoored instances or directly manipulating the model parameters during deployment. However, these approaches are not practical for commercial LLMs that typically operate via API access. In this paper, we propose BadChain, the first backdoor attack against LLMs employing COT prompting, which does not require access to the training dataset or model parameters and imposes low computational overhead. BadChain leverages the inherent reasoning capabilities of LLMs by inserting a backdoor reasoning step into the sequence of reasoning steps of the model output, thereby altering the final response when a backdoor trigger exists in the query prompt. Empirically, we show the effectiveness of BadChain for two COT strategies across four LLMs (Llama2, GPT-3.5, PaLM2, and GPT-4) and six complex benchmark tasks encompassing arithmetic, commonsense, and symbolic reasoning. Moreover, we show that LLMs endowed with stronger reasoning capabilities exhibit higher susceptibility to BadChain, exemplified by a high average attack success rate of 97.0% across the six benchmark tasks on GPT-4. Finally, we propose two defenses based on shuffling and demonstrate their overall ineffectiveness against BadChain. Therefore, BadChain remains a severe threat to LLMs, underscoring the urgency for the development of robust and effective future defenses.

We propose the algorithm that solves the symmetric cone programs (SCPs) by iteratively calling the projection and rescaling methods the algorithms for solving exceptional cases of SCP. Although our algorithm can solve SCPs by itself, we propose it intending to use it as a post-processing step for interior point methods since it can solve the problems more efficiently by using an approximate optimal (interior feasible) solution. We also conduct numerical experiments to see the numerical performance of the proposed algorithm when used as a post-processing step of the solvers implementing interior point methods, using several instances where the symmetric cone is given by a direct product of positive semidefinite cones. Numerical results show that our algorithm can obtain approximate optimal solutions more accurately than the solvers. When at least one of the primal and dual problems did not have an interior feasible solution, the performance of our algorithm was slightly reduced in terms of optimality. However, our algorithm stably returned more accurate solutions than the solvers when the primal and dual problems had interior feasible solutions.

Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.

北京阿比特科技有限公司