亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Zeroth-order optimization methods are developed to overcome the practical hurdle of having knowledge of explicit derivatives. Instead, these schemes work with merely access to noisy functions evaluations. The predominant approach is to mimic first-order methods by means of some gradient estimator. The theoretical limitations are well-understood, yet, as most of these methods rely on finite-differencing for shrinking differences, numerical cancellation can be catastrophic. The numerical community developed an efficient method to overcome this by passing to the complex domain. This approach has been recently adopted by the optimization community and in this work we analyze the practically relevant setting of dealing with computational noise. To exemplify the possibilities we focus on the strongly-convex optimization setting and provide a variety of non-asymptotic results, corroborated by numerical experiments, and end with local non-convex optimization.

相關內容

The problem of distributed optimization requires a group of networked agents to compute a parameter that minimizes the average of their local cost functions. While there are a variety of distributed optimization algorithms that can solve this problem, they are typically vulnerable to "Byzantine" agents that do not follow the algorithm. Recent attempts to address this issue focus on single dimensional functions, or assume certain statistical properties of the functions at the agents. In this paper, we provide two resilient, scalable, distributed optimization algorithms for multi-dimensional functions. Our schemes involve two filters, (1) a distance-based filter and (2) a min-max filter, which each remove neighborhood states that are extreme (defined precisely in our algorithms) at each iteration. We show that these algorithms can mitigate the impact of up to F (unknown) Byzantine agents in the neighborhood of each regular agent. In particular, we show that if the network topology satisfies certain conditions, all of the regular agents' states are guaranteed to converge to a bounded region that contains the minimizer of the average of the regular agents' functions.

We study a general setting of status updating systems in which a set of source nodes provide status updates about some physical process(es) to a set of monitors. The freshness of information available at each monitor is quantified in terms of the Age of Information (AoI), and the vector of AoI processes at the monitors (or equivalently the age vector) models the continuous state of the system. While the marginal distributional properties of each AoI process have been studied for a variety of settings using the stochastic hybrid system (SHS) approach, we lack a counterpart of this approach to systematically study their joint distributional properties. Developing such a framework is the main contribution of this paper. In particular, we model the discrete state of the system as a finite-state continuous-time Markov chain, and describe the coupled evolution of the continuous and discrete states of the system by a piecewise linear SHS with linear reset maps. Using the notion of tensors, we first derive first-order linear differential equations for the temporal evolution of both the joint moments and the joint moment generating function (MGF) for an arbitrary set of age processes. We then characterize the conditions under which the derived differential equations are asymptotically stable. The generality of our framework is demonstrated by recovering several existing results as special cases. Finally, we apply our framework to derive closed-form expressions of the stationary joint MGF in a multi-source updating system under non-preemptive and source-agnostic/source-aware preemptive in service queueing disciplines.

In this paper, we consider testing the martingale difference hypothesis for high-dimensional time series. Our test is built on the sum of squares of the element-wise max-norm of the proposed matrix-valued nonlinear dependence measure at different lags. To conduct the inference, we approximate the null distribution of our test statistic by Gaussian approximation and provide a simulation-based approach to generate critical values. The asymptotic behavior of the test statistic under the alternative is also studied. Our approach is nonparametric as the null hypothesis only assumes the time series concerned is martingale difference without specifying any parametric forms of its conditional moments. As an advantage of Gaussian approximation, our test is robust to the cross-series dependence of unknown magnitude. To the best of our knowledge, this is the first valid test for the martingale difference hypothesis that not only allows for large dimension but also captures nonlinear serial dependence. The practical usefulness of our test is illustrated via simulation and a real data analysis. The test is implemented in a user-friendly R-function.

Adversarial examples, inputs designed to induce worst-case behavior in machine learning models, have been extensively studied over the past decade. Yet, our understanding of this phenomenon stems from a rather fragmented pool of knowledge; at present, there are a handful of attacks, each with disparate assumptions in threat models and incomparable definitions of optimality. In this paper, we propose a systematic approach to characterize worst-case (i.e., optimal) adversaries. We first introduce an extensible decomposition of attacks in adversarial machine learning by atomizing attack components into surfaces and travelers. With our decomposition, we enumerate over components to create 576 attacks (568 of which were previously unexplored). Next, we propose the Pareto Ensemble Attack (PEA): a theoretical attack that upper-bounds attack performance. With our new attacks, we measure performance relative to the PEA on: both robust and non-robust models, seven datasets, and three extended lp-based threat models incorporating compute costs, formalizing the Space of Adversarial Strategies. From our evaluation we find that attack performance to be highly contextual: the domain, model robustness, and threat model can have a profound influence on attack efficacy. Our investigation suggests that future studies measuring the security of machine learning should: (1) be contextualized to the domain & threat models, and (2) go beyond the handful of known attacks used today.

We study a repeated information design problem faced by an informed sender who tries to influence the behavior of a self-interested receiver. We consider settings where the receiver faces a sequential decision making (SDM) problem. At each round, the sender observes the realizations of random events in the SDM problem. This begets the challenge of how to incrementally disclose such information to the receiver to persuade them to follow (desirable) action recommendations. We study the case in which the sender does not know random events probabilities, and, thus, they have to gradually learn them while persuading the receiver. We start by providing a non-trivial polytopal approximation of the set of sender's persuasive information structures. This is crucial to design efficient learning algorithms. Next, we prove a negative result: no learning algorithm can be persuasive. Thus, we relax persuasiveness requirements by focusing on algorithms that guarantee that the receiver's regret in following recommendations grows sub-linearly. In the full-feedback setting -- where the sender observes all random events realizations -- , we provide an algorithm with $\tilde{O}(\sqrt{T})$ regret for both the sender and the receiver. Instead, in the bandit-feedback setting -- where the sender only observes the realizations of random events actually occurring in the SDM problem -- , we design an algorithm that, given an $\alpha \in [1/2, 1]$ as input, ensures $\tilde{O}({T^\alpha})$ and $\tilde{O}( T^{\max \{ \alpha, 1-\frac{\alpha}{2} \} })$ regrets, for the sender and the receiver respectively. This result is complemented by a lower bound showing that such a regrets trade-off is essentially tight.

Differential Privacy (DP) is an important privacy-enhancing technology for private machine learning systems. It allows to measure and bound the risk associated with an individual participation in a computation. However, it was recently observed that DP learning systems may exacerbate bias and unfairness for different groups of individuals. This paper builds on these important observations and sheds light on the causes of the disparate impacts arising in the problem of differentially private empirical risk minimization. It focuses on the accuracy disparity arising among groups of individuals in two well-studied DP learning methods: output perturbation and differentially private stochastic gradient descent. The paper analyzes which data and model properties are responsible for the disproportionate impacts, why these aspects are affecting different groups disproportionately and proposes guidelines to mitigate these effects. The proposed approach is evaluated on several datasets and settings.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

北京阿比特科技有限公司