A reasonable and balanced diet is essential for maintaining good health. With the advancements in deep learning, automated nutrition estimation method based on food images offers a promising solution for monitoring daily nutritional intake and promoting dietary health. While monocular image-based nutrition estimation is convenient, efficient, and economical, the challenge of limited accuracy remains a significant concern. To tackle this issue, we proposed DPF-Nutrition, an end-to-end nutrition estimation method using monocular images. In DPF-Nutrition, we introduced a depth prediction module to generate depth maps, thereby improving the accuracy of food portion estimation. Additionally, we designed an RGB-D fusion module that combined monocular images with the predicted depth information, resulting in better performance for nutrition estimation. To the best of our knowledge, this was the pioneering effort that integrated depth prediction and RGB-D fusion techniques in food nutrition estimation. Comprehensive experiments performed on Nutrition5k evaluated the effectiveness and efficiency of DPF-Nutrition.
Foodborne illnesses significantly impact public health. Deep learning surveillance applications using social media data aim to detect early warning signals. However, labeling foodborne illness-related tweets for model training requires extensive human resources, making it challenging to collect a sufficient number of high-quality labels for tweets within a limited budget. The severe class imbalance resulting from the scarcity of foodborne illness-related tweets among the vast volume of social media further exacerbates the problem. Classifiers trained on a class-imbalanced dataset are biased towards the majority class, making accurate detection difficult. To overcome these challenges, we propose EGAL, a deep learning framework for foodborne illness detection that uses small expert-labeled tweets augmented by crowdsourced-labeled and massive unlabeled data. Specifically, by leveraging tweets labeled by experts as a reward set, EGAL learns to assign a weight of zero to incorrectly labeled tweets to mitigate their negative influence. Other tweets receive proportionate weights to counter-balance the unbalanced class distribution. Extensive experiments on real-world \textit{TWEET-FID} data show that EGAL outperforms strong baseline models across different settings, including varying expert-labeled set sizes and class imbalance ratios. A case study on a multistate outbreak of Salmonella Typhimurium infection linked to packaged salad greens demonstrates how the trained model captures relevant tweets offering valuable outbreak insights. EGAL, funded by the U.S. Department of Agriculture (USDA), has the potential to be deployed for real-time analysis of tweet streaming, contributing to foodborne illness outbreak surveillance efforts.
Ensuring the safe and reliable operation of collaborative robots demands robust sensor diagnostics. This paper introduces a methodology for formulating model-based constraints tailored for sensor diagnostics, featuring analytical relationships extending across mechanical and electrical domains. While applicable to various robotic systems, the study specifically centers on a robotic joint employing a series elastic actuator. Three distinct constraints are imposed on the series elastic actuator: the Torsional Spring Constraint, Joint Dynamics Constraint, and Electrical Motor Constraint. Through a simulation example, we demonstrate the efficacy of the proposed model-based sensor diagnostics methodology. The study addresses two distinct types of sensor faults that may arise in the torque sensor of a robot joint, and delves into their respective detection methods. This insightful sensor diagnostic methodology is customizable and applicable across various components of robots, offering fault diagnostic and isolation capabilities. This research contributes valuable insights aimed at enhancing the diagnostic capabilities essential for the optimal performance of robotic manipulators in collaborative environments.
Digital Imaging and Communication System (DICOM) is widely used throughout the public health sector for portability in medical imaging. However, these DICOM files have vulnerabilities present in the preamble section. Successful exploitation of these vulnerabilities can allow attackers to embed executable codes in the 128-Byte preamble of DICOM files. Embedding the malicious executable will not interfere with the readability or functionality of DICOM imagery. However, it will affect the underline system silently upon viewing these files. This paper shows the infiltration of Windows malware executables into DICOM files. On viewing the files, the malicious DICOM will get executed and eventually infect the entire hospital network through the radiologist's workstation. The code injection process of executing malware in DICOM files affects the hospital networks and workstations' memory. Memory forensics for the infected radiologist's workstation is crucial as it can detect which malware disrupts the hospital environment, and future detection methods can be deployed. In this paper, we consider the machine learning (ML) algorithms to conduct memory forensics on three memory dump categories: Trojan, Spyware, and Ransomware, taken from the CIC-MalMem-2022 dataset. We obtain the highest accuracy of 75\% with the Random Forest model. For estimating the feature importance for ML model prediction, we leveraged the concept of Shapley values.
Multi-step reasoning ability is fundamental to many natural language tasks, yet it is unclear what constitutes a good reasoning chain and how to evaluate them. Most existing methods focus solely on whether the reasoning chain leads to the correct conclusion, but this answer-oriented view may confound reasoning quality with other spurious shortcuts to predict the answer. To bridge this gap, we evaluate reasoning chains by viewing them as informal proofs that derive the final answer. Specifically, we propose ReCEval (Reasoning Chain Evaluation), a framework that evaluates reasoning chains via two key properties: (1) correctness, i.e., each step makes a valid inference based on information contained within the step, preceding steps, and input context, and (2) informativeness, i.e., each step provides new information that is helpful towards deriving the generated answer. We evaluate these properties by developing metrics using natural language inference models and V-Information. On multiple datasets, we show that ReCEval effectively identifies various error types and yields notable improvements compared to prior methods. We analyze the impact of step boundaries, and previous steps on evaluating correctness and demonstrate that our informativeness metric captures the expected flow of information in high-quality reasoning chains. Finally, we show that scoring reasoning chains based on ReCEval improves downstream task performance. Our code is publicly available at: //github.com/archiki/ReCEval
We illustrate use of nonparametric statistical methods to compare alternative treatments for a particular disease or condition on both their relative effectiveness and their relative cost. These Incremental Cost Effectiveness (ICE) methods are based upon Bootstrapping, i.e. Resampling with Replacement from observational or clinical-trial data on individual patients. We first show how a reasonable numerical value for the "Shadow Price of Health" can be chosen using functions within the ICEinfer R-package when effectiveness is not measured in "QALY"s. We also argue that simple histograms are ideal for communicating key findings to regulators, while our more detailed graphics may well be more informative and compelling for other health-care stakeholders.
Due to its conceptual simplicity and generality, compressive neural representation has emerged as a promising alternative to traditional compression methods for managing massive volumetric datasets. The current practice of neural compression utilizes a single large multilayer perceptron (MLP) to encode the global volume, incurring slow training and inference. This paper presents an efficient compressive neural representation (ECNR) solution for time-varying data compression, utilizing the Laplacian pyramid for adaptive signal fitting. Following a multiscale structure, we leverage multiple small MLPs at each scale for fitting local content or residual blocks. By assigning similar blocks to the same MLP via size uniformization, we enable balanced parallelization among MLPs to significantly speed up training and inference. Working in concert with the multiscale structure, we tailor a deep compression strategy to compact the resulting model. We show the effectiveness of ECNR with multiple datasets and compare it with state-of-the-art compression methods (mainly SZ3, TTHRESH, and neurcomp). The results position ECNR as a promising solution for volumetric data compression.
The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.