In a human-AI collaboration, users build a mental model of the AI system based on its reliability and how it presents its decision, e.g. its presentation of system confidence and an explanation of the output. Modern NLP systems are often uncalibrated, resulting in confidently incorrect predictions that undermine user trust. In order to build trustworthy AI, we must understand how user trust is developed and how it can be regained after potential trust-eroding events. We study the evolution of user trust in response to these trust-eroding events using a betting game. We find that even a few incorrect instances with inaccurate confidence estimates damage user trust and performance, with very slow recovery. We also show that this degradation in trust reduces the success of human-AI collaboration and that different types of miscalibration -- unconfidently correct and confidently incorrect -- have different negative effects on user trust. Our findings highlight the importance of calibration in user-facing AI applications and shed light on what aspects help users decide whether to trust the AI system.
Motivated by limitations on the depth of near-term quantum devices, we study the depth-computation trade-off in the query model, where the depth corresponds to the number of adaptive query rounds and the computation per layer corresponds to the number of parallel queries per round. We achieve the strongest known separation between quantum algorithms with $r$ versus $r-1$ rounds of adaptivity. We do so by using the $k$-fold Forrelation problem introduced by Aaronson and Ambainis (SICOMP'18). For $k=2r$, this problem can be solved using an $r$ round quantum algorithm with only one query per round, yet we show that any $r-1$ round quantum algorithm needs an exponential (in the number of qubits) number of parallel queries per round. Our results are proven following the Fourier analytic machinery developed in recent works on quantum-classical separations. The key new component in our result are bounds on the Fourier weights of quantum query algorithms with bounded number of rounds of adaptivity. These may be of independent interest as they distinguish the polynomials that arise from such algorithms from arbitrary bounded polynomials of the same degree.
A bipartite graph extensively models relationships between real-world entities of two different types, such as user-product data in e-commerce. Such graph data are inherently becoming more and more streaming, entailing continuous insertions and deletions of edges. A butterfly (i.e., 2x2 bi-clique) is the smallest non-trivial cohesive structure that plays a crucial role. Counting such butterfly patterns in streaming bipartite graphs is a core problem in applications such as dense subgraph discovery and anomaly detection. Yet, existing approximate solutions consider insert-only streams and, thus, achieve very low accuracy in fully dynamic bipartite graph streams that involve both insertions and deletions of edges. Adapting them to consider deletions is not trivial either, because different sampling schemes and new accuracy analyses are required. In this paper, we propose Abacus, a novel approximate algorithm that counts butterflies in the presence of both insertions and deletions by utilizing sampling. We prove that Abacus always delivers unbiased estimates of low variance. Furthermore, we extend Abacus and devise a parallel mini-batch variant, namely, Parabacus, which counts butterflies in parallel. Parabacus counts butterflies in a load-balanced manner using versioned samples, which results in significant speedup and is thus ideal for critical applications in the streaming environment. We evaluate Abacus/Parabacus using a diverse set of real bipartite graphs and assess its performance in terms of accuracy, throughput, and speedup. The results indicate that our proposal is the first capable of efficiently providing accurate butterfly counts in the most generic setting, i.e., a fully dynamic graph streaming environment that entails both insertions and deletions. It does so without sacrificing throughput and even improving it with the parallel version.
The following is a technical report to test the validity of the proposed Subspace Pyramid Fusion Module (SPFM) to capture multi-scale feature representations, which is more useful for semantic segmentation. In this investigation, we have proposed the Efficient Shuffle Attention Module(ESAM) to reconstruct the skip-connections paths by fusing multi-level global context features. Experimental results on two well-known semantic segmentation datasets, including Camvid and Cityscapes, show the effectiveness of our proposed method.
We describe the design of an immersive virtual Cyberball task that included avatar customization, and user feedback on this design. We first created a prototype of an avatar customization template and added it to a Cyberball prototype built in the Unity3D game engine. Then, we conducted in-depth user testing and feedback sessions with 15 Cyberball stakeholders: five naive participants with no prior knowledge of Cyberball and ten experienced researchers with extensive experience using the Cyberball paradigm. We report the divergent perspectives of the two groups on the following design insights; designing for intuitive use, inclusivity, and realistic experiences versus minimalism. Participant responses shed light on how system design problems may contribute to or perpetuate negative experiences when customizing avatars. They also demonstrate the value of considering multiple stakeholders' feedback in the design process for virtual reality, presenting a more comprehensive view in designing future Cyberball prototypes and interactive systems for social science research.
Data markets facilitate decentralized data exchange for applications such as prediction, learning, or inference. The design of these markets is challenged by varying privacy preferences as well as data similarity among data owners. Related works have often overlooked how data similarity impacts pricing and data value through statistical information leakage. We demonstrate that data similarity and privacy preferences are integral to market design and propose a query-response protocol using local differential privacy for a two-party data acquisition mechanism. In our regression data market model, we analyze strategic interactions between privacy-aware owners and the learner as a Stackelberg game over the asked price and privacy factor. Finally, we numerically evaluate how data similarity affects market participation and traded data value.
Building a generalist agent that can interact with the world is the intriguing target of AI systems, thus spurring the research for embodied navigation, where an agent is required to navigate according to instructions or respond to queries. Despite the major progress attained, previous works primarily focus on task-specific agents and lack generalizability to unseen scenarios. Recently, LLMs have presented remarkable capabilities across various fields, and provided a promising opportunity for embodied navigation. Drawing on this, we propose the first generalist model for embodied navigation, NaviLLM. It adapts LLMs to embodied navigation by introducing schema-based instruction. The schema-based instruction flexibly casts various tasks into generation problems, thereby unifying a wide range of tasks. This approach allows us to integrate diverse data sources from various datasets into the training, equipping NaviLLM with a wide range of capabilities required by embodied navigation. We conduct extensive experiments to evaluate the performance and generalizability of our model. The experimental results demonstrate that our unified model achieves state-of-the-art performance on CVDN, SOON, and ScanQA. Specifically, it surpasses the previous stats-of-the-art method by a significant margin of 29% in goal progress on CVDN. Moreover, our model also demonstrates strong generalizability and presents impressive results on unseen tasks, e.g., embodied question answering and 3D captioning.
With the development of the Internet of Things (IoT), certain IoT devices have the capability to not only accomplish their own tasks but also simultaneously assist other resource-constrained devices. Therefore, this paper considers a device-assisted mobile edge computing system that leverages auxiliary IoT devices to alleviate the computational burden on the edge computing server and enhance the overall system performance. In this study, computationally intensive tasks are decomposed into multiple partitions, and each task partition can be processed in parallel on an IoT device or the edge server. The objective of this research is to develop an efficient online algorithm that addresses the joint optimization of task partitioning and parallel scheduling under time-varying system states, posing challenges to conventional numerical optimization methods. To address these challenges, a framework called online task partitioning action and parallel scheduling policy generation (OTPPS) is proposed, which is based on deep reinforcement learning (DRL). Specifically, the framework leverages a deep neural network (DNN) to learn the optimal partitioning action for each task by mapping input states. Furthermore, it is demonstrated that the remaining parallel scheduling problem exhibits NP-hard complexity when considering a specific task partitioning action. To address this subproblem, a fair and delay-minimized task scheduling (FDMTS) algorithm is designed. Extensive evaluation results demonstrate that OTPPS achieves near-optimal average delay performance and consistently high fairness levels in various environmental states compared to other baseline schemes.
By allowing users to erase their data's impact on federated learning models, federated unlearning protects users' right to be forgotten and data privacy. Despite a burgeoning body of research on federated unlearning's technical feasibility, there is a paucity of literature investigating the considerations behind users' requests for data revocation. This paper proposes a non-cooperative game framework to study users' data revocation strategies in federated unlearning. We prove the existence of a Nash equilibrium. However, users' best response strategies are coupled via model performance and unlearning costs, which makes the equilibrium computation challenging. We obtain the Nash equilibrium by establishing its equivalence with a much simpler auxiliary optimization problem. We also summarize users' multi-dimensional attributes into a single-dimensional metric and derive the closed-form characterization of an equilibrium, when users' unlearning costs are negligible. Moreover, we compare the cases of allowing and forbidding partial data revocation in federated unlearning. Interestingly, the results reveal that allowing partial revocation does not necessarily increase users' data contributions or payoffs due to the game structure. Additionally, we demonstrate that positive externalities may exist between users' data revocation decisions when users incur unlearning costs, while this is not the case when their unlearning costs are negligible.
For projection-based linear-subspace model order reduction (MOR), it is well known that the Kolmogorov n-width describes the best-possible error for a reduced order model (ROM) of size n. In this paper, we provide approximation bounds for ROMs on polynomially mapped manifolds. In particular, we show that the approximation bounds depend on the polynomial degree p of the mapping function as well as on the linear Kolmogorov n-width for the underlying problem. This results in a Kolmogorov (n, p)-width, which describes a lower bound for the best-possible error for a ROM on polynomially mapped manifolds of polynomial degree p and reduced size n.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.