Current supervised visual detectors, though impressive within their training distribution, often fail to segment out-of-distribution scenes into their constituent entities. Recent test-time adaptation methods use auxiliary self-supervised losses to adapt the network parameters to each test example independently and have shown promising results towards generalization outside the training distribution for the task of image classification. In our work, we find evidence that these losses can be insufficient for instance segmentation tasks, without also considering architectural inductive biases. For image segmentation, recent slot-centric generative models break such dependence on supervision by attempting to segment scenes into entities in a self-supervised manner by reconstructing pixels. Drawing upon these two lines of work, we propose Slot-TTA, a semi-supervised instance segmentation model equipped with a slot-centric inductive bias, that is adapted per scene at test time through gradient descent on reconstruction or novel view synthesis objectives. We show that test-time adaptation in Slot-TTA greatly improves instance segmentation in out-of-distribution scenes. We evaluate Slot-TTA in several 3D and 2D scene instance segmentation benchmarks and show substantial out-of-distribution performance improvements against state-of-the-art supervised feed-forward detectors and self-supervised test-time adaptation methods.
When solving a problem, human beings have the adaptive ability in terms of the type of information they use, the procedure they take, and the amount of time they spend approaching and solving the problem. However, most standard neural networks have the same function type and fixed computation budget on different samples regardless of their nature and difficulty. Adaptivity is a powerful paradigm as it not only imbues practitioners with flexibility pertaining to the downstream usage of these models but can also serve as a powerful inductive bias for solving certain challenging classes of problems. In this work, we propose a new strategy, AdaTape, that enables dynamic computation in neural networks via adaptive tape tokens. AdaTape employs an elastic input sequence by equipping an existing architecture with a dynamic read-and-write tape. Specifically, we adaptively generate input sequences using tape tokens obtained from a tape bank that can either be trainable or generated from input data. We analyze the challenges and requirements to obtain dynamic sequence content and length, and propose the Adaptive Tape Reader (ATR) algorithm to achieve both objectives. Via extensive experiments on image recognition tasks, we show that AdaTape can achieve better performance while maintaining the computational cost.
Fully test-time adaptation aims at adapting a pre-trained model to the test stream during real-time inference, which is urgently required when the test distribution differs from the training distribution. Several efforts have been devoted to improving adaptation performance. However, we find that two unfavorable defects are concealed in the prevalent adaptation methodologies like test-time batch normalization (BN) and self-learning. First, we reveal that the normalization statistics in test-time BN are completely affected by the currently received test samples, resulting in inaccurate estimates. Second, we show that during test-time adaptation, the parameter update is biased towards some dominant classes. In addition to the extensively studied test stream with independent and class-balanced samples, we further observe that the defects can be exacerbated in more complicated test environments, such as (time) dependent or class-imbalanced data. We observe that previous approaches work well in certain scenarios while show performance degradation in others due to their faults. In this paper, we provide a plug-in solution called DELTA for Degradation-freE fuLly Test-time Adaptation, which consists of two components: (i) Test-time Batch Renormalization (TBR), introduced to improve the estimated normalization statistics. (ii) Dynamic Online re-weighTing (DOT), designed to address the class bias within optimization. We investigate various test-time adaptation methods on three commonly used datasets with four scenarios, and a newly introduced real-world dataset. DELTA can help them deal with all scenarios simultaneously, leading to SOTA performance.
Recently, test-time adaptation (TTA) has been proposed as a promising solution for addressing distribution shifts. It allows a base model to adapt to an unforeseen distribution during inference by leveraging the information from the batch of (unlabeled) test data. However, we uncover a novel security vulnerability of TTA based on the insight that predictions on benign samples can be impacted by malicious samples in the same batch. To exploit this vulnerability, we propose Distribution Invading Attack (DIA), which injects a small fraction of malicious data into the test batch. DIA causes models using TTA to misclassify benign and unperturbed test data, providing an entirely new capability for adversaries that is infeasible in canonical machine learning pipelines. Through comprehensive evaluations, we demonstrate the high effectiveness of our attack on multiple benchmarks across six TTA methods. In response, we investigate two countermeasures to robustify the existing insecure TTA implementations, following the principle of "security by design". Together, we hope our findings can make the community aware of the utility-security tradeoffs in deploying TTA and provide valuable insights for developing robust TTA approaches.
Despite rapid advancements in lifelong learning (LLL) research, a large body of research mainly focuses on improving the performance in the existing \textit{static} continual learning (CL) setups. These methods lack the ability to succeed in a rapidly changing \textit{dynamic} environment, where an AI agent needs to quickly learn new instances in a `single pass' from the non-i.i.d (also possibly temporally contiguous/coherent) data streams without suffering from catastrophic forgetting. For practical applicability, we propose a novel lifelong learning approach, which is streaming, i.e., a single input sample arrives in each time step, single pass, class-incremental, and subject to be evaluated at any moment. To address this challenging setup and various evaluation protocols, we propose a Bayesian framework, that enables fast parameter update, given a single training example, and enables any-time inference. We additionally propose an implicit regularizer in the form of snap-shot self-distillation, which effectively minimizes the forgetting further. We further propose an effective method that efficiently selects a subset of samples for online memory rehearsal and employs a new replay buffer management scheme that significantly boosts the overall performance. Our empirical evaluations and ablations demonstrate that the proposed method outperforms the prior works by large margins.
With the rapid development of wearable cameras, a massive collection of egocentric video for first-person visual perception becomes available. Using egocentric videos to predict first-person activity faces many challenges, including limited field of view, occlusions, and unstable motions. Observing that sensor data from wearable devices facilitates human activity recognition, multi-modal activity recognition is attracting increasing attention. However, the deficiency of related dataset hinders the development of multi-modal deep learning for egocentric activity recognition. Nowadays, deep learning in real world has led to a focus on continual learning that often suffers from catastrophic forgetting. But the catastrophic forgetting problem for egocentric activity recognition, especially in the context of multiple modalities, remains unexplored due to unavailability of dataset. In order to assist this research, we present a multi-modal egocentric activity dataset for continual learning named UESTC-MMEA-CL, which is collected by self-developed glasses integrating a first-person camera and wearable sensors. It contains synchronized data of videos, accelerometers, and gyroscopes, for 32 types of daily activities, performed by 10 participants. Its class types and scale are compared with other publicly available datasets. The statistical analysis of the sensor data is given to show the auxiliary effects for different behaviors. And results of egocentric activity recognition are reported when using separately, and jointly, three modalities: RGB, acceleration, and gyroscope, on a base network architecture. To explore the catastrophic forgetting in continual learning tasks, four baseline methods are extensively evaluated with different multi-modal combinations. We hope the UESTC-MMEA-CL can promote future studies on continual learning for first-person activity recognition in wearable applications.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as domain transfer adaptation when it needs knowledge correspondence between different moments. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. Transfer adaptation learning aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance. This paper surveys the recent advances in transfer adaptation learning methodology and potential benchmarks. Broader challenges being faced by transfer adaptation learning researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation, and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey provides researchers a framework for better understanding and identifying the research status, challenges and future directions of the field.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.
Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.