Diffusion models have achieved great success in image synthesis through iterative noise estimation using deep neural networks. However, the slow inference, high memory consumption, and computation intensity of the noise estimation model hinder the efficient adoption of diffusion models. Although post-training quantization (PTQ) is considered a go-to compression method for other tasks, it does not work out-of-the-box on diffusion models. We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture of the diffusion models, which compresses the noise estimation network to accelerate the generation process. We identify the key difficulty of diffusion model quantization as the changing output distributions of noise estimation networks over multiple time steps and the bimodal activation distribution of the shortcut layers within the noise estimation network. We tackle these challenges with timestep-aware calibration and split shortcut quantization in this work. Experimental results show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance (small FID change of at most 2.34 compared to >100 for traditional PTQ) in a training-free manner. Our approach can also be applied to text-guided image generation, where we can run stable diffusion in 4-bit weights with high generation quality for the first time.
Adversarial attacks have been proven to be potential threats to Deep Neural Networks (DNNs), and many methods are proposed to defend against adversarial attacks. However, while enhancing the robustness, the clean accuracy will decline to a certain extent, implying a trade-off existed between the accuracy and robustness. In this paper, we firstly empirically find an obvious distinction between standard and robust models in the filters' weight distribution of the same architecture, and then theoretically explain this phenomenon in terms of the gradient regularization, which shows this difference is an intrinsic property for DNNs, and thus a static network architecture is difficult to improve the accuracy and robustness at the same time. Secondly, based on this observation, we propose a sample-wise dynamic network architecture named Adversarial Weight-Varied Network (AW-Net), which focuses on dealing with clean and adversarial examples with a ``divide and rule" weight strategy. The AW-Net dynamically adjusts network's weights based on regulation signals generated by an adversarial detector, which is directly influenced by the input sample. Benefiting from the dynamic network architecture, clean and adversarial examples can be processed with different network weights, which provides the potentiality to enhance the accuracy and robustness simultaneously. A series of experiments demonstrate that our AW-Net is architecture-friendly to handle both clean and adversarial examples and can achieve better trade-off performance than state-of-the-art robust models.
Equipping a deep model the abaility of few-shot learning, i.e., learning quickly from only few examples, is a core challenge for artificial intelligence. Gradient-based meta-learning approaches effectively address the challenge by learning how to learn novel tasks. Its key idea is learning a deep model in a bi-level optimization manner, where the outer-loop process learns a shared gradient descent algorithm (i.e., its hyperparameters), while the inner-loop process leverage it to optimize a task-specific model by using only few labeled data. Although these existing methods have shown superior performance, the outer-loop process requires calculating second-order derivatives along the inner optimization path, which imposes considerable memory burdens and the risk of vanishing gradients. Drawing inspiration from recent progress of diffusion models, we find that the inner-loop gradient descent process can be actually viewed as a reverse process (i.e., denoising) of diffusion where the target of denoising is model weights but the origin data. Based on this fact, in this paper, we propose to model the gradient descent optimizer as a diffusion model and then present a novel task-conditional diffusion-based meta-learning, called MetaDiff, that effectively models the optimization process of model weights from Gaussion noises to target weights in a denoising manner. Thanks to the training efficiency of diffusion models, our MetaDiff do not need to differentiate through the inner-loop path such that the memory burdens and the risk of vanishing gradients can be effectvely alleviated. Experiment results show that our MetaDiff outperforms the state-of-the-art gradient-based meta-learning family in few-shot learning tasks.
The future networks pose intense demands for intelligent and customized designs to cope with the surging network scale, dynamically time-varying environments, diverse user requirements, and complicated manual configuration. However, traditional rule-based solutions heavily rely on human efforts and expertise, while data-driven intelligent algorithms still lack interpretability and generalization. In this paper, we propose the AIGN (AI-Generated Network), a novel intention-driven paradigm for network design, which allows operators to quickly generate a variety of customized network solutions and achieve expert-free problem optimization. Driven by the diffusion model-based learning approach, AIGN has great potential to learn the reward-maximizing trajectories, automatically satisfy multiple constraints, adapt to different objectives and scenarios, or even intelligently create novel designs and mechanisms unseen in existing network environments. Finally, we conduct a use case to demonstrate that AIGN can effectively guide the design of transmit power allocation in digital twin-based access networks.
In diverse microscopy modalities, sensors measure only real-valued intensities. Additionally, the sensor readouts are affected by Poissonian-distributed photon noise. Traditional restoration algorithms typically aim to minimize the mean squared error (MSE) between the original and recovered images. This often leads to blurry outcomes with poor perceptual quality. Recently, deep diffusion models (DDMs) have proven to be highly capable of sampling images from the a-posteriori probability of the sought variables, resulting in visually pleasing high-quality images. These models have mostly been suggested for real-valued images suffering from Gaussian noise. In this study, we generalize annealed Langevin Dynamics, a type of DDM, to tackle the fundamental challenges in optical imaging of complex-valued objects (and real images) affected by Poisson noise. We apply our algorithm to various optical scenarios, such as Fourier Ptychography, Phase Retrieval, and Poisson denoising. Our algorithm is evaluated on simulations and biological empirical data.
The gradual nature of a diffusion process that synthesizes samples in small increments constitutes a key ingredient of Denoising Diffusion Probabilistic Models (DDPM), which have presented unprecedented quality in image synthesis and been recently explored in the motion domain. In this work, we propose to adapt the gradual diffusion concept (operating along a diffusion time-axis) into the temporal-axis of the motion sequence. Our key idea is to extend the DDPM framework to support temporally varying denoising, thereby entangling the two axes. Using our special formulation, we iteratively denoise a motion buffer that contains a set of increasingly-noised poses, which auto-regressively produces an arbitrarily long stream of frames. With a stationary diffusion time-axis, in each diffusion step we increment only the temporal-axis of the motion such that the framework produces a new, clean frame which is removed from the beginning of the buffer, followed by a newly drawn noise vector that is appended to it. This new mechanism paves the way towards a new framework for long-term motion synthesis with applications to character animation and other domains.
Decoding EEG signals for imagined speech is a challenging task due to the high-dimensional nature of the data and low signal-to-noise ratio. In recent years, denoising diffusion probabilistic models (DDPMs) have emerged as promising approaches for representation learning in various domains. Our study proposes a novel method for decoding EEG signals for imagined speech using DDPMs and a conditional autoencoder named Diff-E. Results indicate that Diff-E significantly improves the accuracy of decoding EEG signals for imagined speech compared to traditional machine learning techniques and baseline models. Our findings suggest that DDPMs can be an effective tool for EEG signal decoding, with potential implications for the development of brain-computer interfaces that enable communication through imagined speech.
Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.
Deep learning shows great potential in generation tasks thanks to deep latent representation. Generative models are classes of models that can generate observations randomly with respect to certain implied parameters. Recently, the diffusion Model becomes a raising class of generative models by virtue of its power-generating ability. Nowadays, great achievements have been reached. More applications except for computer vision, speech generation, bioinformatics, and natural language processing are to be explored in this field. However, the diffusion model has its natural drawback of a slow generation process, leading to many enhanced works. This survey makes a summary of the field of the diffusion model. We firstly state the main problem with two landmark works - DDPM and DSM. Then, we present a diverse range of advanced techniques to speed up the diffusion models - training schedule, training-free sampling, mixed-modeling, and score & diffusion unification. Regarding existing models, we also provide a benchmark of FID score, IS, and NLL according to specific NFE. Moreover, applications with diffusion models are introduced including computer vision, sequence modeling, audio, and AI for science. Finally, there is a summarization of this field together with limitations & further directions.
Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.
Diffusion models have shown incredible capabilities as generative models; indeed, they power the current state-of-the-art models on text-conditioned image generation such as Imagen and DALL-E 2. In this work we review, demystify, and unify the understanding of diffusion models across both variational and score-based perspectives. We first derive Variational Diffusion Models (VDM) as a special case of a Markovian Hierarchical Variational Autoencoder, where three key assumptions enable tractable computation and scalable optimization of the ELBO. We then prove that optimizing a VDM boils down to learning a neural network to predict one of three potential objectives: the original source input from any arbitrary noisification of it, the original source noise from any arbitrarily noisified input, or the score function of a noisified input at any arbitrary noise level. We then dive deeper into what it means to learn the score function, and connect the variational perspective of a diffusion model explicitly with the Score-based Generative Modeling perspective through Tweedie's Formula. Lastly, we cover how to learn a conditional distribution using diffusion models via guidance.