亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modular exponentiation and scalar multiplication are important operations of most public key cryptosystems, and their fast calculation is essential to improve the system efficiency. The shortest addition chain is one of the most important mathematical concepts to realize the optimization. However, finding a shortest addition chain of length k is an NP-hard problem, whose time complexity is comparable to O($k!$). This paper proposes some novel methods to generate short addition chains. We firstly present a Simplified Power-tree method by deeply deleting the power-tree, whose time complexity is reduced to O($k^2$) sacrificing some increasing of the addition chain length. Moreover, a Cross Window method and its variant are introduced by improving the Window method. More precisely, the Cross Window method uses the cross correlation to deal with the windows and its pre-computation is optimized by the Addition Sequence algorithm. The theoretical analysis is conducted to show the correctness and effectiveness. Meanwhile, the experiment shows that the new methods can obtain shorter addition chains compared to the existing methods. The Cross Window method with the Addition Sequence algorithm can attain 9.5% reduction of the addition chain length, in the best case, compared to the Window method.

相關內容

Microsoft Windows(視窗(chuang)操(cao)(cao)(cao)作(zuo)系統)是(shi)微軟(ruan)公司推出的一系列操(cao)(cao)(cao)作(zuo)系統。它問世于1985年,當時是(shi)DOS之下的操(cao)(cao)(cao)作(zuo)環境,而(er)后(hou)其后(hou)續(xu)版(ban)本作(zuo)逐漸發(fa)展成為(wei)個(ge)人電腦和服務器(qi)用戶設計的操(cao)(cao)(cao)作(zuo)系統。

The distributed linearly separable computation problem finds extensive applications across domains such as distributed gradient coding, distributed linear transform, real-time rendering, etc. In this paper, we investigate this problem in a fully decentralized scenario, where $\mathsf{N}$ workers collaboratively perform the computation task without a central master. Each worker aims to compute a linearly separable computation that can be manifested as $\mathsf{K}_{\mathrm{c}}$ linear combinations of $\mathsf{K}$ messages, where each message is a function of a distinct dataset. We require that each worker successfully fulfill the task based on the transmissions from any $\mathsf{N}_{\mathrm{r}}$ workers, such that the system can tolerate any $\mathsf{N}-\mathsf{N}_{\mathrm{r}}$ stragglers. We focus on the scenario where the computation cost (the number of uncoded datasets assigned to each worker) is minimum, and aim to minimize the communication cost (the number of symbols the fastest $\mathsf{N}_{\mathrm{r}}$ workers transmit). We propose a novel distributed computing scheme that is optimal under the widely used cyclic data assignment. Interestingly, we demonstrate that the side information at each worker is ineffective in reducing the communication cost when $\mathsf{K}_{\mathrm{c}}\leq {\mathsf{K}}\mathsf{N}_{\mathrm{r}}/{\mathsf{N}}$, while it helps reduce the communication cost as $\mathsf{K}_{\mathrm{c}}$ increases.

Neural Implicit Representation (NIR) has recently gained significant attention due to its remarkable ability to encode complex and high-dimensional data into representation space and easily reconstruct it through a trainable mapping function. However, NIR methods assume a one-to-one mapping between the target data and representation models regardless of data relevancy or similarity. This results in poor generalization over multiple complex data and limits their efficiency and scalability. Motivated by continual learning, this work investigates how to accumulate and transfer neural implicit representations for multiple complex video data over sequential encoding sessions. To overcome the limitation of NIR, we propose a novel method, Progressive Fourier Neural Representation (PFNR), that aims to find an adaptive and compact sub-module in Fourier space to encode videos in each training session. This sparsified neural encoding allows the neural network to hold free weights, enabling an improved adaptation for future videos. In addition, when learning a representation for a new video, PFNR transfers the representation of previous videos with frozen weights. This design allows the model to continuously accumulate high-quality neural representations for multiple videos while ensuring lossless decoding that perfectly preserves the learned representations for previous videos. We validate our PFNR method on the UVG8/17 and DAVIS50 video sequence benchmarks and achieve impressive performance gains over strong continual learning baselines. The PFNR code is available at //github.com/ihaeyong/PFNR.git.

Accurately predicting the onset of specific activities within defined timeframes holds significant importance in several applied contexts. In particular, accurate prediction of the number of future users that will be exposed to an intervention is an important piece of information for experimenters running online experiments (A/B tests). In this work, we propose a novel approach to predict the number of users that will be active in a given time period, as well as the temporal trajectory needed to attain a desired user participation threshold. We model user activity using a Bayesian nonparametric approach which allows us to capture the underlying heterogeneity in user engagement. We derive closed-form expressions for the number of new users expected in a given period, and a simple Monte Carlo algorithm targeting the posterior distribution of the number of days needed to attain a desired number of users; the latter is important for experimental planning. We illustrate the performance of our approach via several experiments on synthetic and real world data, in which we show that our novel method outperforms existing competitors.

Automated log analysis is crucial in modern software-intensive systems for facilitating program comprehension throughout software maintenance and engineering life cycles. Existing methods perform tasks such as log parsing and log anomaly detection by providing a single prediction value without interpretation. However, given the increasing volume of system events, the limited interpretability of analysis results hinders analysts' comprehension of program status and their ability to take appropriate actions. Moreover, these methods require substantial in-domain training data, and their performance declines sharply (by up to 62.5%) in online scenarios involving unseen logs from new domains, a common occurrence due to rapid software updates. In this paper, we propose LogPrompt, a novel interpretable log analysis approach for online scenarios. LogPrompt employs large language models (LLMs) to perform online log analysis tasks via a suite of advanced prompt strategies tailored for log tasks, which enhances LLMs' performance by up to 380.7% compared with simple prompts. Experiments on nine publicly available evaluation datasets across two tasks demonstrate that LogPrompt, despite requiring no in-domain training, outperforms existing approaches trained on thousands of logs by up to 55.9%. We also conduct a human evaluation of LogPrompt's interpretability, with six practitioners possessing over 10 years of experience, who highly rated the generated content in terms of usefulness and readability (averagely 4.42/5). LogPrompt also exhibits remarkable compatibility with open-source and smaller-scale LLMs, making it flexible for practical deployment. Code of LogPrompt is available at //github.com/lunyiliu/LogPrompt.

Social relations are leveraged to tackle the sparsity issue of user-item interaction data in recommendation under the assumption of social homophily. However, social recommendation paradigms predominantly focus on homophily based on user preferences. While social information can enhance recommendations, its alignment with user preferences is not guaranteed, thereby posing the risk of introducing informational redundancy. We empirically discover that social graphs in real recommendation data exhibit low preference-aware homophily, which limits the effect of social recommendation models. To comprehensively extract preference-aware homophily information latent in the social graph, we propose Social Heterophily-alleviating Rewiring (SHaRe), a data-centric framework for enhancing existing graph-based social recommendation models. We adopt Graph Rewiring technique to capture and add highly homophilic social relations, and cut low homophilic (or heterophilic) relations. To better refine the user representations from reliable social relations, we integrate a contrastive learning method into the training of SHaRe, aiming to calibrate the user representations for enhancing the result of Graph Rewiring. Experiments on real-world datasets show that the proposed framework not only exhibits enhanced performances across varying homophily ratios but also improves the performance of existing state-of-the-art (SOTA) social recommendation models.

This paper introduces a novel approach called "friendly attack" aimed at enhancing the performance of error correction channel codes. Inspired by the concept of adversarial attacks, our method leverages the idea of introducing slight perturbations to the neural network input, resulting in a substantial impact on the network's performance. By introducing small perturbations to fixed-point modulated codewords before transmission, we effectively improve the decoder's performance without violating the input power constraint. The perturbation design is accomplished by a modified iterative fast gradient method. This study investigates various decoder architectures suitable for computing gradients to obtain the desired perturbations. Specifically, we consider belief propagation (BP) for LDPC codes; the error correcting code transformer, BP and neural BP (NBP) for polar codes, and neural BCJR for convolutional codes. We demonstrate that the proposed friendly attack method can improve the reliability across different channels, modulations, codes, and decoders. This method allows us to increase the reliability of communication with a legacy receiver by simply modifying the transmitted codeword appropriately.

The typical federated learning workflow requires communication between a central server and a large set of clients synchronizing model parameters between each other. The current frameworks use communication protocols not suitable for resource-constrained devices and are either hard to deploy or require high-throughput links not available on these devices. In this paper, we present a generic message framework using CBOR for communication with existing federated learning frameworks optimised for use with resource-constrained devices and low power and lossy network links. We evaluate the resulting message sizes against JSON serialized messages where compare both with model parameters resulting in optimal and worst case serialization length, and with a real-world LeNet-5 model. Our benchmarks show that with our approach, messages are up to 75 % smaller in size when compared to the JSON alternative.

Collaborative perception aims to mitigate the limitations of single-agent perception, such as occlusions, by facilitating data exchange among multiple agents. However, most current works consider a homogeneous scenario where all agents use identity sensors and perception models. In reality, heterogeneous agent types may continually emerge and inevitably face a domain gap when collaborating with existing agents. In this paper, we introduce a new open heterogeneous problem: how to accommodate continually emerging new heterogeneous agent types into collaborative perception, while ensuring high perception performance and low integration cost? To address this problem, we propose HEterogeneous ALliance (HEAL), a novel extensible collaborative perception framework. HEAL first establishes a unified feature space with initial agents via a novel multi-scale foreground-aware Pyramid Fusion network. When heterogeneous new agents emerge with previously unseen modalities or models, we align them to the established unified space with an innovative backward alignment. This step only involves individual training on the new agent type, thus presenting extremely low training costs and high extensibility. It also protects new agents' model details from disclosure since the training can be conducted by the agent owner locally. To enrich agents' data heterogeneity, we bring OPV2V-H, a new large-scale dataset with more diverse sensor types. Extensive experiments on OPV2V-H and DAIR-V2X datasets show that HEAL surpasses SOTA methods in performance while reducing the training parameters by 91.5% when integrating 3 new agent types. Code and data are available at: //github.com/yifanlu0227/HEAL.

Convolutional neural networks have shown to be widely applicable to a large number of fields when large amounts of labelled data are available. The recent trend has been to use models with increasingly larger sets of tunable parameters to increase model accuracy, reduce model loss, or create more adversarially robust models -- goals that are often at odds with one another. In particular, recent theoretical work raises questions about the ability for even larger models to generalize to data outside of the controlled train and test sets. As such, we examine the role of the number of hidden layers in the ResNet model, demonstrated on the MNIST, CIFAR10, CIFAR100 datasets. We test a variety of parameters including the size of the model, the floating point precision, and the noise level of both the training data and the model output. To encapsulate the model's predictive power and computational cost, we provide a method that uses induced failures to model the probability of failure as a function of time and relate that to a novel metric that allows us to quickly determine whether or not the cost of training a model outweighs the cost of attacking it. Using this approach, we are able to approximate the expected failure rate using a small number of specially crafted samples rather than increasingly larger benchmark datasets. We demonstrate the efficacy of this technique on both the MNIST and CIFAR10 datasets using 8-, 16-, 32-, and 64-bit floating-point numbers, various data pre-processing techniques, and several attacks on five configurations of the ResNet model. Then, using empirical measurements, we examine the various trade-offs between cost, robustness, latency, and reliability to find that larger models do not significantly aid in adversarial robustness despite costing significantly more to train.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司