亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Functional sliced inverse regression (FSIR) is one of the most popular algorithms for functional sufficient dimension reduction (FSDR). However, the choice of slice scheme in FSIR is critical but challenging. In this paper, we propose a new method called functional slicing-free inverse regression (FSFIR) to estimate the central subspace in FSDR. FSFIR is based on the martingale difference divergence operator, which is a novel metric introduced to characterize the conditional mean independence of a functional predictor on a multivariate response. We also provide a specific convergence rate for the FSFIR estimator. Compared with existing functional sliced inverse regression methods, FSFIR does not require the selection of a slice number. Simulations demonstrate the efficiency and convenience of FSFIR.

相關內容

We consider the problem of signal estimation in a generalized linear model (GLM). GLMs include many canonical problems in statistical estimation, such as linear regression, phase retrieval, and 1-bit compressed sensing. Recent work has precisely characterized the asymptotic minimum mean-squared error (MMSE) for GLMs with i.i.d. Gaussian sensing matrices. However, in many models there is a significant gap between the MMSE and the performance of the best known feasible estimators. In this work, we address this issue by considering GLMs defined via spatially coupled sensing matrices. We propose an efficient approximate message passing (AMP) algorithm for estimation and prove that with a simple choice of spatially coupled design, the MSE of a carefully tuned AMP estimator approaches the asymptotic MMSE in the high-dimensional limit. To prove the result, we first rigorously characterize the asymptotic performance of AMP for a GLM with a generic spatially coupled design. This characterization is in terms of a deterministic recursion (`state evolution') that depends on the parameters defining the spatial coupling. Then, using a simple spatially coupled design and judicious choice of functions defining the AMP, we analyze the fixed points of the resulting state evolution and show that it achieves the asymptotic MMSE. Numerical results for phase retrieval and rectified linear regression show that spatially coupled designs can yield substantially lower MSE than i.i.d. Gaussian designs at finite dimensions when used with AMP algorithms.

The parallel alternating direction method of multipliers (ADMM) algorithms have gained popularity in statistics and machine learning for their efficient handling of large sample data problems. However, the parallel structure of these algorithms is based on the consensus problem, which can lead to an excessive number of auxiliary variables for high-dimensional data. In this paper, we propose a partition-insensitive parallel framework based on the linearized ADMM (LADMM) algorithm and apply it to solve nonconvex penalized smooth quantile regression problems. Compared to existing parallel ADMM algorithms, our algorithm does not rely on the consensus problem, resulting in a significant reduction in the number of variables that need to be updated at each iteration. It is worth noting that the solution of our algorithm remains unchanged regardless of how the total sample is divided, which is also known as partition-insensitivity. Furthermore, under some mild assumptions, we prove that the iterative sequence generated by the parallel LADMM algorithm converges to a critical point of the nonconvex optimization problem. Numerical experiments on synthetic and real datasets demonstrate the feasibility and validity of the proposed algorithm.

Symbolic regression, as one of the most crucial tasks in AI for science, discovers governing equations from experimental data. Popular approaches based on genetic programming, Monte Carlo tree search, or deep reinforcement learning learn symbolic regression from a fixed dataset. They require massive datasets and long training time especially when learning complex equations involving many variables. Recently, Control Variable Genetic Programming (CVGP) has been introduced which accelerates the regression process by discovering equations from designed control variable experiments. However, the set of experiments is fixed a-priori in CVGP and we observe that sub-optimal selection of experiment schedules delay the discovery process significantly. To overcome this limitation, we propose Racing Control Variable Genetic Programming (Racing-CVGP), which carries out multiple experiment schedules simultaneously. A selection scheme similar to that used in selecting good symbolic equations in the genetic programming process is implemented to ensure that promising experiment schedules eventually win over the average ones. The unfavorable schedules are terminated early to save time for the promising ones. We evaluate Racing-CVGP on several synthetic and real-world datasets corresponding to true physics laws. We demonstrate that Racing-CVGP outperforms CVGP and a series of symbolic regressors which discover equations from fixed datasets.

We present two effective methods for solving high-dimensional partial differential equations (PDE) based on randomized neural networks. Motivated by the universal approximation property of this type of networks, both methods extend the extreme learning machine (ELM) approach from low to high dimensions. With the first method the unknown solution field in $d$ dimensions is represented by a randomized feed-forward neural network, in which the hidden-layer parameters are randomly assigned and fixed while the output-layer parameters are trained. The PDE and the boundary/initial conditions, as well as the continuity conditions (for the local variant of the method), are enforced on a set of random interior/boundary collocation points. The resultant linear or nonlinear algebraic system, through its least squares solution, provides the trained values for the network parameters. With the second method the high-dimensional PDE problem is reformulated through a constrained expression based on an Approximate variant of the Theory of Functional Connections (A-TFC), which avoids the exponential growth in the number of terms of TFC as the dimension increases. The free field function in the A-TFC constrained expression is represented by a randomized neural network and is trained by a procedure analogous to the first method. We present ample numerical simulations for a number of high-dimensional linear/nonlinear stationary/dynamic PDEs to demonstrate their performance. These methods can produce accurate solutions to high-dimensional PDEs, in particular with their errors reaching levels not far from the machine accuracy for relatively lower dimensions. Compared with the physics-informed neural network (PINN) method, the current method is both cost-effective and more accurate for high-dimensional PDEs.

Abramsky, Dawar, and Wang (2017) introduced the pebbling comonad for k-variable counting logic and thereby initiated a line of work that imports category theoretic machinery to finite model theory. Such game comonads have been developed for various logics, yielding characterisations of logical equivalences in terms of isomorphisms in the associated co-Kleisli category. We show a first limitation of this approach by studying linear-algebraic logic, which is strictly more expressive than first-order counting logic and whose k-variable logical equivalence relations are known as invertible-map equivalences (IM). We show that there exists no finite-rank comonad on the category of graphs whose co-Kleisli isomorphisms characterise IM-equivalence, answering a question of \'O Conghaile and Dawar (CSL 2021). We obtain this result by ruling out a characterisation of IM-equivalence in terms of homomorphism indistinguishability and employing the Lov\'asz-type theorems for game comonads established by Dawar, Jakl, and Reggio (2021). Two graphs are homomorphism indistinguishable over a graph class if they admit the same number of homomorphisms from every graph in the class. The IM-equivalences cannot be characterised in this way, neither when counting homomorphisms in the natural numbers, nor in any finite prime field.

At the core of the quest for a logic for PTime is a mismatch between algorithms making arbitrary choices and isomorphism-invariant logics. One approach to overcome this problem is witnessed symmetric choice. It allows for choices from definable orbits which are certified by definable witnessing automorphisms. We consider the extension of fixed-point logic with counting (IFPC) with witnessed symmetric choice (IFPC+WSC) and a further extension with an interpretation operator (IFPC+WSC+I). The latter operator evaluates a subformula in the structure defined by an interpretation. This structure possibly has other automorphisms exploitable by the WSC-operator. For similar extensions of pure fixed-point logic (IFP) it is known that IFP+WSCI simulates counting which IFP+WSC fails to do. For IFPC+WSC it is unknown whether the interpretation operator increases expressiveness and thus allows studying the relation between WSC and interpretations beyond counting. We separate IFPC+WSC from IFPC+WSCI by showing that IFPC+WSC is not closed under FO-interpretations. By the same argument, we answer an open question of Dawar and Richerby regarding non-witnessed symmetric choice in IFP. Additionally, we prove that nesting WSC-operators increases the expressiveness using the so-called CFI graphs. We show that if IFPC+WSC+I canonizes a particular class of base graphs, then it also canonizes the corresponding CFI graphs. This differs from various other logics, where CFI graphs provide difficult instances.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司