亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum computing holds immense potential for solving classically intractable problems by leveraging the unique properties of quantum mechanics. The scalability of quantum architectures remains a significant challenge. Multi-core quantum architectures are proposed to solve the scalability problem, arising a new set of challenges in hardware, communications and compilation, among others. One of these challenges is to adapt a quantum algorithm to fit within the different cores of the quantum computer. This paper presents a novel approach for circuit partitioning using Deep Reinforcement Learning, contributing to the advancement of both quantum computing and graph partitioning. This work is the first step in integrating Deep Reinforcement Learning techniques into Quantum Circuit Mapping, opening the door to a new paradigm of solutions to such problems.

相關內容

Kernel techniques are among the most influential approaches in data science and statistics. Under mild conditions, the reproducing kernel Hilbert space associated to a kernel is capable of encoding the independence of $M\ge 2$ random variables. Probably the most widespread independence measure relying on kernels is the so-called Hilbert-Schmidt independence criterion (HSIC; also referred to as distance covariance in the statistics literature). Despite various existing HSIC estimators designed since its introduction close to two decades ago, the fundamental question of the rate at which HSIC can be estimated is still open. In this work, we prove that the minimax optimal rate of HSIC estimation on $\mathbb R^d$ for Borel measures containing the Gaussians with continuous bounded translation-invariant characteristic kernels is $\mathcal O\!\left(n^{-1/2}\right)$. Specifically, our result implies the optimality in the minimax sense of many of the most-frequently used estimators (including the U-statistic, the V-statistic, and the Nystr\"om-based one) on $\mathbb R^d$.

Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into the SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This method maintains the flexibility of the text and is user-friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR utilizes the pre-trained language model (e.g., T5 or CLIP) to enhance restoration. We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into SR, yields excellent results on both synthetic and real-world images. Code is available at: //github.com/zhengchen1999/PromptSR.

We propose a zero-shot approach to image harmonization, aiming to overcome the reliance on large amounts of synthetic composite images in existing methods. These methods, while showing promising results, involve significant training expenses and often struggle with generalization to unseen images. To this end, we introduce a fully modularized framework inspired by human behavior. Leveraging the reasoning capabilities of recent foundation models in language and vision, our approach comprises three main stages. Initially, we employ a pretrained vision-language model (VLM) to generate descriptions for the composite image. Subsequently, these descriptions guide the foreground harmonization direction of a text-to-image generative model (T2I). We refine text embeddings for enhanced representation of imaging conditions and employ self-attention and edge maps for structure preservation. Following each harmonization iteration, an evaluator determines whether to conclude or modify the harmonization direction. The resulting framework, mirroring human behavior, achieves harmonious results without the need for extensive training. We present compelling visual results across diverse scenes and objects, along with a user study validating the effectiveness of our approach.

This paper studies a multiplayer reach-avoid differential game in the presence of general polygonal obstacles that block the players' motions. The pursuers cooperate to protect a convex region from the evaders who try to reach the region. We propose a multiplayer onsite and close-to-goal (MOCG) pursuit strategy that can tell and achieve an increasing lower bound on the number of guaranteed defeated evaders. This pursuit strategy fuses the subgame outcomes for multiple pursuers against one evader with hierarchical optimal task allocation in the receding-horizon manner. To determine the qualitative subgame outcomes that who is the game winner, we construct three pursuit winning regions and strategies under which the pursuers guarantee to win against the evader, regardless of the unknown evader strategy. First, we utilize the expanded Apollonius circles and propose the onsite pursuit winning that achieves the capture in finite time. Second, we introduce convex goal-covering polygons (GCPs) and propose the close-to-goal pursuit winning for the pursuers whose visibility region contains the whole protected region, and the goal-visible property will be preserved afterwards. Third, we employ Euclidean shortest paths (ESPs) and construct a pursuit winning region and strategy for the non-goal-visible pursuers, where the pursuers are firstly steered to positions with goal visibility along ESPs. In each horizon, the hierarchical optimal task allocation maximizes the number of defeated evaders and consists of four sequential matchings: capture, enhanced, non-dominated and closest matchings. Numerical examples are presented to illustrate the results.

Understanding the dimension dependency of computational complexity in high-dimensional sampling problem is a fundamental problem, both from a practical and theoretical perspective. Compared with samplers with unbiased stationary distribution, e.g., Metropolis-adjusted Langevin algorithm (MALA), biased samplers, e.g., Underdamped Langevin Dynamics (ULD), perform better in low-accuracy cases just because a lower dimension dependency in their complexities. Along this line, Freund et al. (2022) suggest that the modified Langevin algorithm with prior diffusion is able to converge dimension independently for strongly log-concave target distributions. Nonetheless, it remains open whether such property establishes for more general cases. In this paper, we investigate the prior diffusion technique for the target distributions satisfying log-Sobolev inequality (LSI), which covers a much broader class of distributions compared to the strongly log-concave ones. In particular, we prove that the modified Langevin algorithm can also obtain the dimension-independent convergence of KL divergence with different step size schedules. The core of our proof technique is a novel construction of an interpolating SDE, which significantly helps to conduct a more accurate characterization of the discrete updates of the overdamped Langevin dynamics. Our theoretical analysis demonstrates the benefits of prior diffusion for a broader class of target distributions and provides new insights into developing faster sampling algorithms.

This paper introduces a novel theoretical framework for the analysis of vector-valued neural networks through the development of vector-valued variation spaces, a new class of reproducing kernel Banach spaces. These spaces emerge from studying the regularization effect of weight decay in training networks with activations like the rectified linear unit (ReLU). This framework offers a deeper understanding of multi-output networks and their function-space characteristics. A key contribution of this work is the development of a representer theorem for the vector-valued variation spaces. This representer theorem establishes that shallow vector-valued neural networks are the solutions to data-fitting problems over these infinite-dimensional spaces, where the network widths are bounded by the square of the number of training data. This observation reveals that the norm associated with these vector-valued variation spaces encourages the learning of features that are useful for multiple tasks, shedding new light on multi-task learning with neural networks. Finally, this paper develops a connection between weight-decay regularization and the multi-task lasso problem. This connection leads to novel bounds for layer widths in deep networks that depend on the intrinsic dimensions of the training data representations. This insight not only deepens the understanding of the deep network architectural requirements, but also yields a simple convex optimization method for deep neural network compression. The performance of this compression procedure is evaluated on various architectures.

We examine the linear regression problem in a challenging high-dimensional setting with correlated predictors where the vector of coefficients can vary from sparse to dense. In this setting, we propose a combination of probabilistic variable screening with random projection tools as a viable approach. More specifically, we introduce a new data-driven random projection tailored to the problem at hand and derive a theoretical bound on the gain in expected prediction error over conventional random projections. The variables to enter the projection are screened by accounting for predictor correlation. To reduce the dependence on fine-tuning choices, we aggregate over an ensemble of linear models. A thresholding parameter is introduced to obtain a higher degree of sparsity. Both this parameter and the number of models in the ensemble can be chosen by cross-validation. In extensive simulations, we compare the proposed method with other random projection tools and with classical sparse and dense methods and show that it is competitive in terms of prediction across a variety of scenarios with different sparsity and predictor covariance settings. We also show that the method with cross-validation is able to rank the variables satisfactorily. Finally, we showcase the method on two real data applications.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司